
"APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0

USSR

VD 576.858.098.396.332.095.38

URYVAYEV, L. V., SOKOLOVA, T. M., YERSHOV, F. I., and ZHDANOV, V. M., Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR,

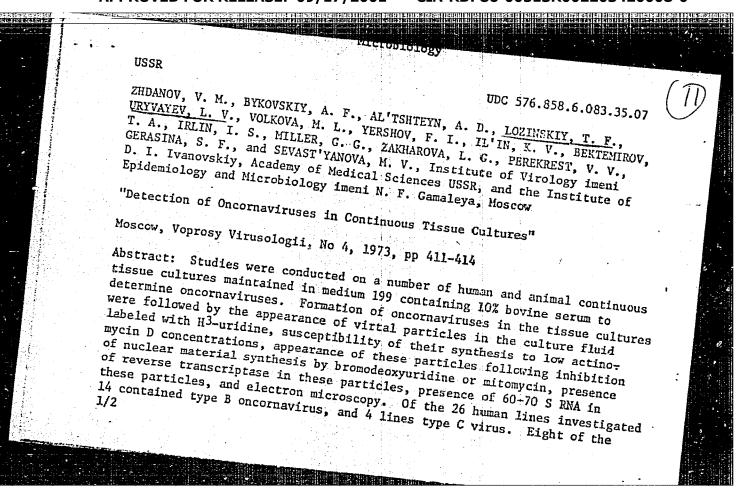
"A Study of the Phenomenon of Complexing Between Viral RNA and Cell Proteins"

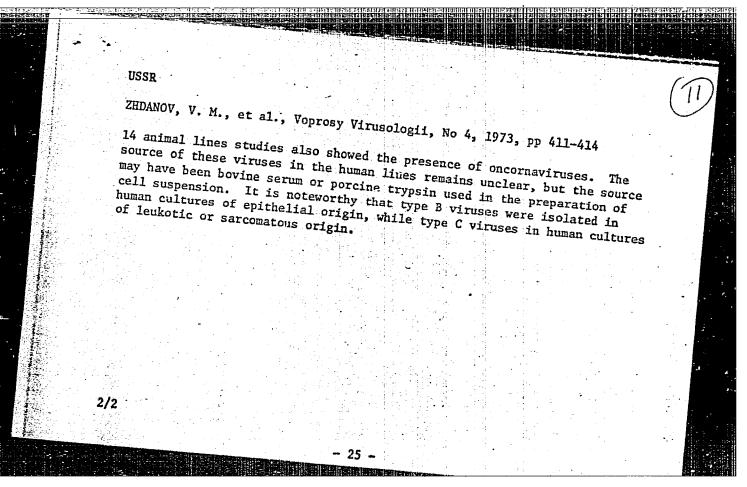
Moscow, Voprosy Virusologii, No 6, Nov/Dec 72, pp 670-676

Abstract: Physicochemical properties of chick embryo fibroblast proteins complexing with Venezuelan equine encephalomyelitis virus RIM were studied. Complexing activity between protein, isolated in a EMAI-cellulose column at all 6.8 and not sedimenting upon 105,000 g centrifugation, and habeled viral RNA was judged by the degree to which RNA was arrested by a millipore filter. Three classes of proteins (125, 95, and 6-4.55) with differing complexing activity has an effect on complexing activity. Increasing the RaCl concentration from 0.01-0.1M to 0.5-1M considerably reduces sorption of viral RNA. It was also shown that RNA sorption decreases as the protein concentration is decreased. A drop in ribonucleoprotein sedimentation constant from 653 to 575. The suggested that high ionic strength causes viral RNA to form compact units that

- hli -

USSR


URYVAYEV, L. V., et al., Voprosy Virusologii, No 6, Nov/Dec 72, pp 670-676

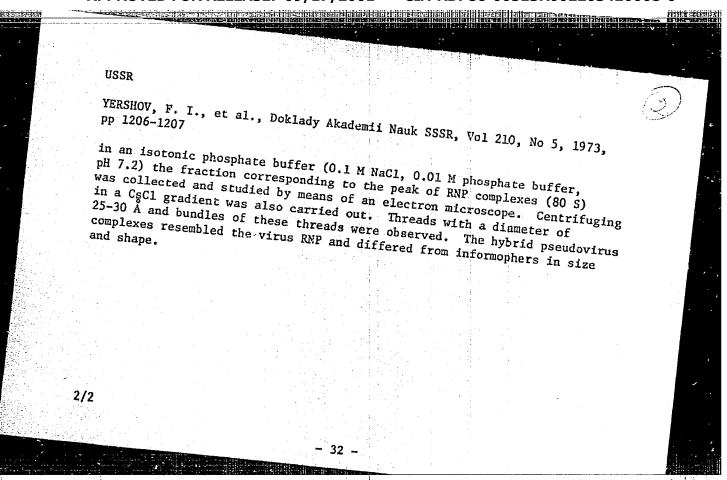

cannot react readily with protein. Though the biological significance of RNA: protein complexing remains unclear, the fact that such complexes arise in isotonic media suggest that such structures exist in infected cells. The relationship between the weight increase of viral RNA and the quantity of protein available suggests that when protein is low in quantity it distributes itself uniformly among all RNA molecules, and RNA sedimentation rate does not increase noticeably.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

स्थानका । या स्थानका में असे का प्राचनित्र समय है से बार के तह के सम्बद्ध के समय है से वास का नाम के समय के स स्थानका के समय का समय के समय की समय की समय के समय के स

Molecular Biology


USSR

YERSHOV, F. I., BYKOVSKIY, A. F., URYVAVEV, L. V., SOKOLOVA, T. M., and ZHDANOV, V. M., Member Academy of Medical Sciences USSR, Institute of VDC 578.6 Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR, Moscow

"The Morphology of Hybrid Ribonucleoprotein Complexes (Pseudoviruses)"

Moscow, Doklady Akademii Nauk SSSR, Vol 210, No 5, 1973, pp 1206-1207

Abstract: It was established in earlier work by Yershov et al (DAN SSSR, Vol 189, No 4, 882, 1969) that addition of the infectious RNA of the virus of Venezuelan equine encephalomyelitis to the fraction S 105 of the hyaloplasm of chick embryo fibroblasts results in the formation of hybrid ribonucleoprotein (RNP) complexes (pseudoviruses) that consist of the virus RNA and cell proteins and differ from the virion RNP in regard to their sedimentation distribution and floating density. They are insensitive to the action of antivirus antibodies, but at the same time exhibit infectious activity. In the work reported at present, the morphology of the pseudoviruses in question was studied by electron microscopy. It was established that the optimum ratio for the formation of the RNP complexes was 400 gamma virus RNA to 1.6 mg protein. On purification of the RNP complexes (pseudoviruses) by centrifuging in a 10-30% density gradient of sucross dissolved

USSR

UDC 576.858.25.098.396.332

AGABALYAN, A. S., URYVAYEV, L. V., and YERSHOV, F. I., Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR, Moscow

"Characteristics of Viral RNA of Venezuelan Equine Encephalomyelitis Virus"

Moscow, Voprosy Virusologii, No 4, Jul/Aug 72, pp 490-494

Abstract: The physicochemical properties of viral RNA isolated from Venezuelan equine encephalomyelitis (VEE) virus were studied in comparison to those of other group A arboviruses. RNA was labeled with H3-uridine and studied spectrophotometrically. The RNA formed a single peak in a sucrose gradient with a sedimentation constant of 38-40s. This peak was sensitive to RNA-ase, and its maximum infectivity coincided with the maximum of radioactivity. Electrophoresis of the RNA in 3.5% agarose-polycarylamide gel indicated that it was homogeneous and pure, and enabled determination of its molecular weight: 4:0. 100-4.3.100 daltons. When fractionated in a cesium sulfate density gradient, the RNA settled in a single zone with density 1.55 gm/cm3. These findings support previously published evidence that viral RHA is heavier than had been supposed. Differences in other properties between data on VEE virus RMA given here and previously published data on RNA of other A arboviruses are minor and can be attributed to variations in experimental procedures. Thus it is concluded that VEE virus RNA is identical in physicochemical properties to other

USSR

UDC 576.858

GAYTSKHOKI, V. S., YERSHOV, F. I., KISELEV, O. I., MEN'SHIKH, L. K., ZAYTSEVA, O. V., URYVAYEV, I. V., ZHDANOV, V. M., Member of the Academy of Medical Sciences USSR, and NEYFAKH, S. A., Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR, Moscow, and Institute of Experimental Medicine, Academy of Medical Sciences USSR, Leningrad

"Reconstruction of the Autonomous Genetic and Protein-Synthesizing System from Virus RNA and Isolated Mitochondria"

Moscow, Doklady Akademii Nauk SSSR, Vol 201, No 1, 1971, pp 220-223

Abstract: In experiments performed on isolated mitochondria of rat liver incubated with H3-RNA obtained from purified Venezuelan equine encephalomyelitis virus, it was demonstrated that the virus RNA enters the mitochondria and is incorporated into their autonomous system of protein synthesis, for which the mitochondria supply the necessary energy. Transcription of the mitochondrial DNA is inhibited, the virus RNA is replicated, and thus virus proteins are synthesized.

1/1

13 --

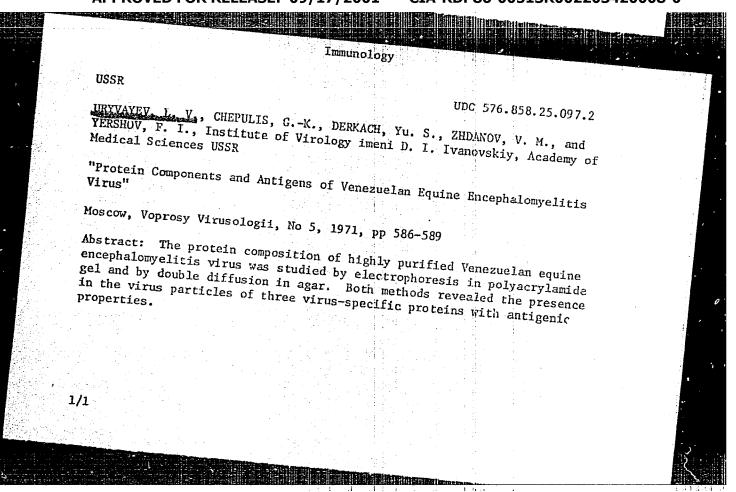
USSI?

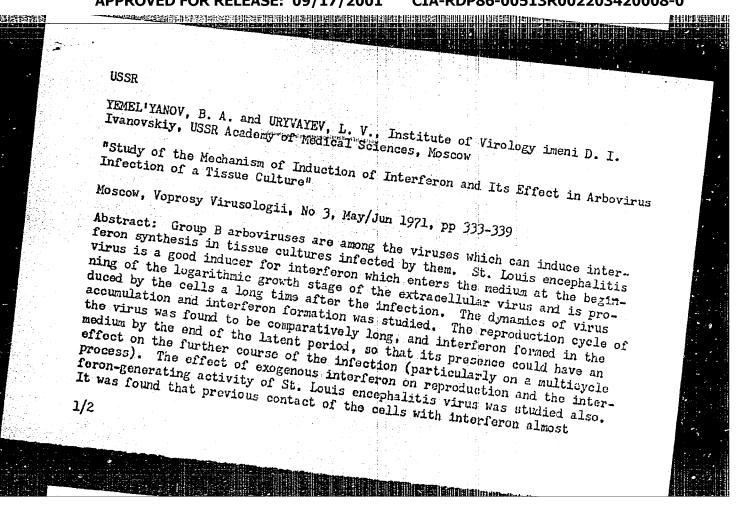
UDC 576.858.098.396.332.083.1

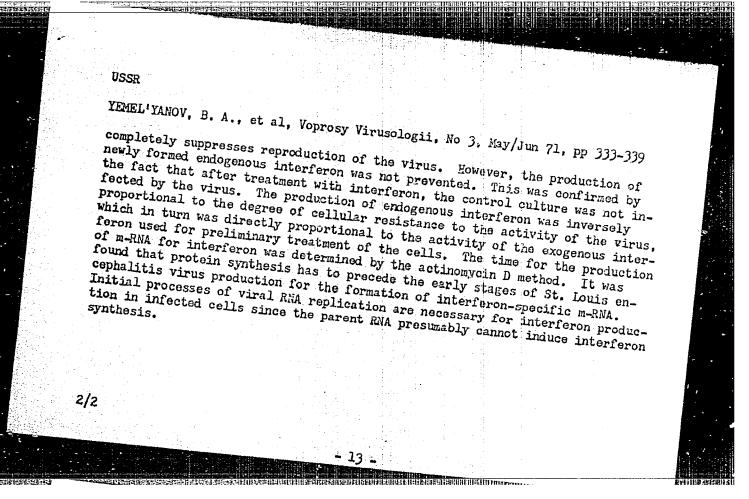
YERSHOV, F. I., CAYSKHOKI, V. S., KISELEV, O. I., ZAYTSEVA, O. V., MENSHIKH, L. K., URYVAYEV, L. V., KEYFAKH, S. A., and ZEDANOV, V. M., Institute of Virology Ineni D. I. Ivanovskiy, USSR Academy of Medical Sciences, Moscow, Institute of Experimental Medicine, USSR Academy of Medical Sciences, Leningrad

"Replication of Infectious Viral RNA in Isolated Mitochondria. Report II: Replication of Viral RNA in Mitochondria and Characteristics of the Final Product"

Moscou, Voprosy Virusologii, No 3, May/Jun 71, pp 274-280


Abstract: It was of interest to establish whether isolated mitochondria could replicate virus RNA, that is whether "bacterial" ribosomes could synthesize the functionally active RNA polymerase, and whether the final product of virus-specific synthesis has infectious properties. II3-RNA isolated from purified Venezuelan equine encephalitis virus was used to study the function of virus RNA emerging in mitochondria. Contact between mitochondria and RNA was 30 minutes at 0°C. After this, the mitochondria were incubated under aerobic conditions for 2 hours at 37°C. After termination of the incubation period, RNA was separated by the phenol deproteinizing method and analyzed in a sucrose density gradient (5-303). Peaks were found in the 405 and 26-205 region. The 405 area corresponds to RNA-ase and the 26-205 area to ribonu-




YERSHOV, F. I., et al., Voprosy Virusologii, No 3, May/Jun 71, pp 274-280 clease-resistant material, the replicative form of viral RNA. The data obtained indicate that the predominant portion of viral RNA appearing in mitochondria does not participate in the replication process and its dehydration products show up in the top zone of the gradient. No radioactive products of mitochondrial RNA translation were detected, which can be explained by the effective concentration of actinomycin D. As the newly synthesized RNA forms complexes with proteins, infectious activity increases. The complexes formed have subcellular structures and are separated from infected cells.

2/2

a 20

USSR

UDC 576.858.25.098.396.332:576.858.25.097.21

YERSHOV, F. I., URYVAYEV, L. V., and ZHDANOV, V. M., Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR, Moscow

"Synthesis of Infectious Ribonucleoprotein of Arboviruses in Subcellular Struc-

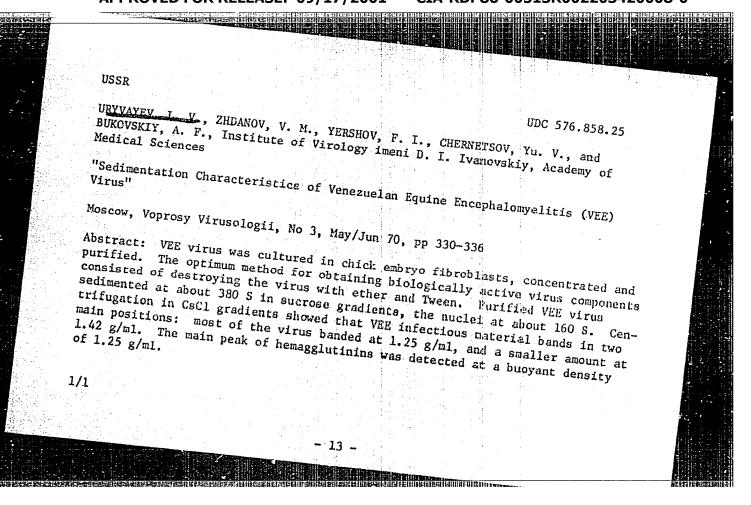
Moscow, Voprosy Viruselogii, No 3, May/Jun 70, pp 322-330

Abstract: A mitochondrial-microsomal (MM) fraction isolated from chick fibroblasts infected with Venezuelan equine encephalomyelitis virus (VEE) and incubated in medium 199 ensures extracellular synthesis of virus-specific complexes possess infectious activity, which increases 80-100-fold in 3-4 hours of incubation. The RNP complexes contain the infectious RNA, which may be associated both with the virus-specific and the cellular proteins. The main part of the infectious RNA is formed extracellularly and not because of completion of the templates derived from cells together with the MM fraction.

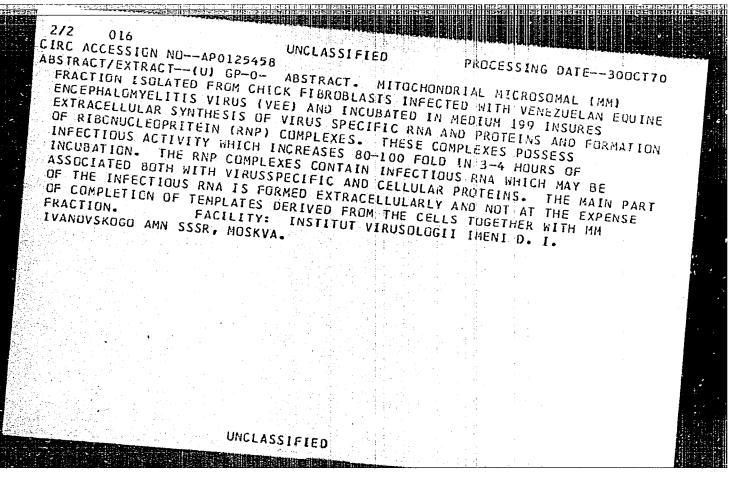
1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

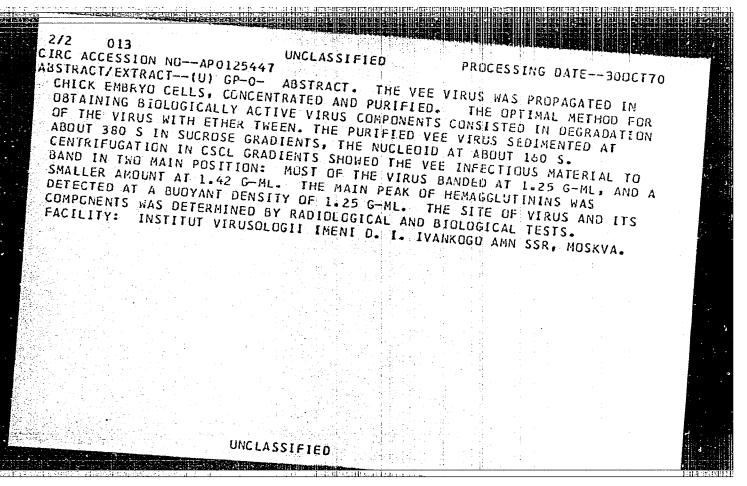
USSR


UDC 576.858.25.095.383.098

ZHDANOV, V. M., YERSHOV, F. I., and URYVAYEV. L. V., Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR, Moscow


"Virus-Like Particles Formed in vivo and in vitro"

Moscow, Voprosy Virusologii, No 5, Sep/Oct 70, pp 537-543


Abstract: It was shown that ribonucleoprotein complexes capable of producing infections and typical plaques in agar were formed in the mitochondrial fraction isolated from cells infected with Venezuelan equine encephalomyelitis (VEE) virus during incubation in proper media. Sedimentation constants of these complexes in a linear sucrose gradient ranged from 80S and 160S. Their buoyant density in Cs gradient varied from 1.30 to 1.42 g/cm³. Virus-like particles ("pseudoviruses") with similar characteristics were found after addition of the infectious RNA of VEE virus to homogenate of uninfected cells. These particles were partially resistant to ribenuclease and could not be neutralized by virus-specific sera. It is proposed that the formation of virus-like particles in vivo and in vitro is based on some complexing between viral RNA and cell proteins, in which case it is possible that formation of

1/2 016 TITLE--SYNTHESIS OF INFECTIOUS RIBONUCLEOPRUTEIN OF ARBOVIRUS IN PROCESSING DATE--300CT70 AUTHOR-(03)-YERSHOV, F.I., URYVAYEV, L.V., ZHDANOV, V.M. CEUNTRY OF INFO-USSR SOURCE-VOPROSY VIRUSCLOSII, 1970, NR 3, PP 322-330 DATE PUBLISHED----70 SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS-ARBOVIRUS, VENEZUELAN EQUINE ENCEPHALITIS VIRUS, RNA, CULTURE CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1847 . STEP NO--UR/0402/70/000/003/0322/0330 CIRC ACCESSION NG-AP0125458 UNCLASSIFIED

1/2 013 TITLE-SEDIMENTATION CHARACTERISTICS OF VENEZUELAN EQUINE AUTHOR-(05)-URYVAYEY. L.V., ZHDANOV, V.M., YERSHOV, F.I., CHERNETSOV, PROCESSING DATE--300CT70 CCUNTRY OF INFO-USSR SGURCE-VOPROSY VIRUSULUGII, 1970, NR 3, PP 330-336 DATE PUBLISHED 70 SUBJECT AREAS—BIGLOGICAL AND MEDICAL SCIENCES TOPIC TAGS-VENEZUELAN EQUINE ENCEPHALITIS VIRUS. TISSUE CULTURE. CONTROL MARKING--NO RESTRICTIONS DECUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1836 STEP NO--UR/0402/70/000/003/0330/0336 CIRC ACCESSION NO--APO125447 UNCLASSIFIED.

USSR

UDC: 576.858

YERSHOV, F.I., URYVAYEV, L.V., and ZHDANOV, V.M., Academician, Academy of Medical Sciences USSR Institute of Virology imeni D.I. Ivanovskiy, Academy of Medical Sciences USSR

"Synthesis of Arbovirus RNA and Proteins in Subcellular Structures"

Moscow, Doklady Akademii Nauk, Vol 190, No 2, 1970, pp 458-460

Abstract: A fraction containing the subcellular structures (SS-15) was extracted from chick fibroblasts infected with Venezuelan equine encephalomyelitis virus and from intact cells. The fraction was diluted (1:10) with medium 199, and incubated for 1-2 hours at 37°C, after which H3-uridine and a C14amino acid mixture were added. After rapid chilling, the SS-15 fraction and accompanying products were centrifuged (1500 g) and analyzed in a sucrose density gradient. Supernatants of the infected cells contained a product with a sedimentation constant of 40%, and lighter, slower settling products in the form of RNA and polypentides, whereas supernatants of the noninfected cells contained only the lighter products. After gradient centrifugation of the SS-15 fractions isolated from infected and noninfected cells, nucleic and protein tags were found in the form of two peaks one of which was linked to the structures, while the other apeared in the lighter part of the gradient. It was concluded that subcellular structures consisting of cytoplasmatic membranes with ribonsomes and mitochondria are a convenient model for studying virus-induced synthesis. 1/1

UDC 576.558 YERSHOV, F. I., URYVAYEV, L. W., and ZHDANOV, V. M., Active Member, Academy of Medical Sciences USSR and DRYNOV, I. D., Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences, Moscow "Cytochemical Analysis of Structures Isolated from Cells Infected with Moscow, Doklady Akademii Nauk SSSR, Vol 190, No 1, Jan/Feb 70, pp 212-Abstract: The morphological characteristics of fraction CC-15, isolated from chick embryo fibroblasts infected with Venezuelan equine encephalomyclitis virus, were studied with the help of phase contrast and fluorescence microscopy. Chick embryo fibroblasts and cells obtained three hours after infection with massive doses of the virus were disintegrated in a homogenator, and the nuclei, debris, and whole remaining cells were centrifuged for 10 minutes. The CG-15 fraction was obtained by the subsequent centrifugation of the homogenate, suspension in 199 medium, and straining with acridine orange, phosphine 3P, and homologous antibodies labelled with fluorescein isothiocyanate. Part of the preparation were stained with Janus green, or prered by 1/2

USSR

YERSHOV, F. I., et al., Moscow, Doklady Akademii Nauk SSSR, vol 190, No 1, Jan/Feb 70, pp 212-213

by the crushed drop method and studied by means of phase contrast microscopy. Examinations showed that cytoplasmic RNA of whole cells stained with acridine orange fluoresced ruby-red while the RMA of the nucleoli -- brick-red, and DNA of the nuclei -- emerald-green. Phosphine 3P produced a greenish-brown color in the cytoplasm and a dark-brown color in the cell nuclei. Fluorescence microscopy of the debris and and nuclei obtained after homogenation showed large conglomerates of cytoplasm which were ruby-red. Fraction CC-15 stained with acridine orange revealed under phase contrast microscopy a mass of ruby-red granules scattered through the entire field of vision. When stained with phosphine 3P -- single brightly fluorescing lipid granules were observed. A considerable increase in the number of lipid granules was noted when the CC-15 fraction from infected cells was studied by fluorescence microscopy. The presence of a specific virus antigen was observed in the CC-15 fraction treated with fluorescein isothiocyanate. Scattered mitochondria were observed throughout the cytoplasmic network of fraction CC-15 preparations stained with Janus

1/2 007
TITLE-ON THE SYNTHESIS OF C SUBS A SUB3 IN PRESENCE OF CR SUB2 O SUB3 -U-

AUTHOR-(03)-MASILY. YE.N., URYVAYOVA, G.D., LOGVINENKO, A.T.

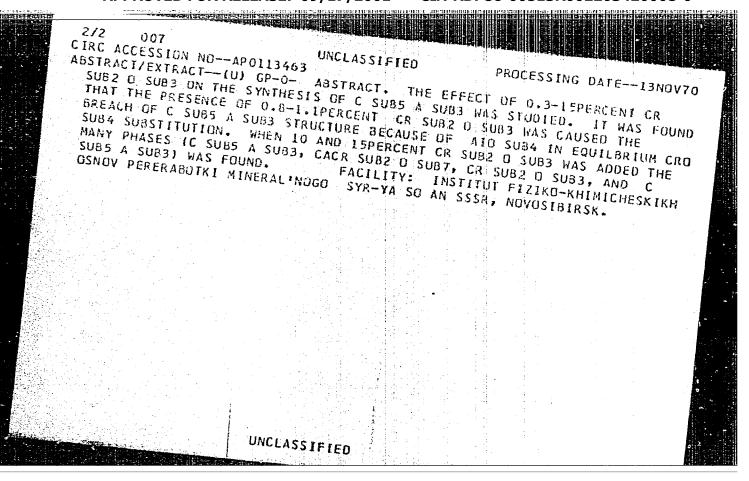
CCUNTRY OF INFO--USSR

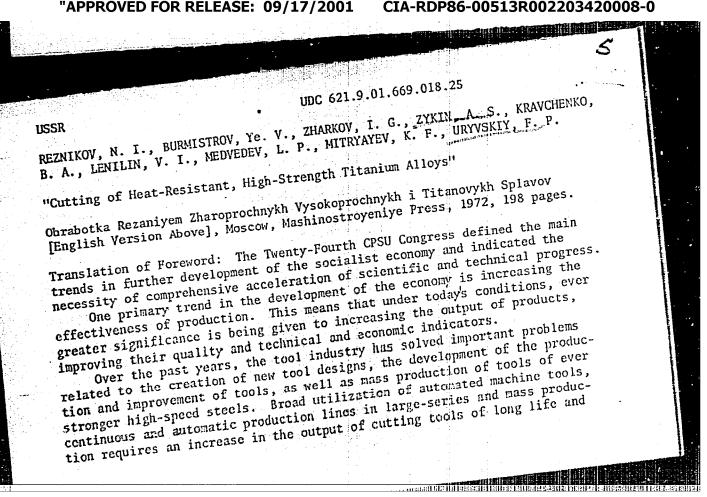
SOURCE-IZVESTIYA SIBIRSKOGO OTDELENIYA AKADEMII NAUK SSSR, NO 4, SERIYA KHIMICHESKIKH NAUK, 1970, NR 2, PP 168-171

DATE PUBLISHED---70

SUBJECT AREAS-CHEMISTRY

TGPIC TAGS--CHRGMIUM_OXIDE, CHEMICAL SYNTHESIS


CENTROL MARKING-NO RESTRICTIONS


PROXY REEL/FRAME--1993/0572

STEP NO--UR/0289/70/000/000/0168/0171

CIRC ACCESSION NO-APOL13463

UNCLASSIFIED

CIA-RDP86-00513R002203420008-0" APPROVED FOR RELEASE: 09/17/2001

CIA-RDP86-00513R002203420008-0 "APPROVED FOR RELEASE: 09/17/2001

USSR

UDC 621.9.01.669.018.25

REZNIKOV, N. I., BURMISTROV, Ye. V., et. al., Obrabotka Rezaniyem Zharoprochnykh Vysokoprochnykh i Titanovykh Splavov, Moscow, Mashinostroyeniye Press, 1972, 198 pages.

high accuracy, capable of operating under severe cutting conditions for long periods of time without replacement. Tool life can be increased if the tool industry is provided with high quality steels and alloys. Soviet scientists have created alloys with high strength characteristics and high heat resistance. The workability of alloys and steels can be improved by the use of various methods based on ultrasonics, electric contact and induction heating, application of small electric currents to the cutting zone, etc. These methods allow the life of a cutting tool to be increased by 2 to 5 times, increasing the cutting speed and productivity of processing. Part quality can be improved by using tools of natural and synthetic diamonds, as well as elbor. The present work familiarizes the reader with research conducted into

the physics of the cutting process, materials for cutting tools, optimal cutting modes and methods of improving the quality and workability of parts.

TABLE OF CONTENTS

Foreword

2/6

- 86 -

		6	
	UDC 621.9.01.669.018.25	•	
	REZNIKOV, N. I., BURMISTROV, Ye. V., et. al., Obrabotka Rezaniyem Zharoj chnykh Vysokoprochnykh i Titanovykh Splavov, Moscow, Mashinostroyeniye	ro- Press,	
	1972, 198 pages.	5	
	法统法证金 化二烯化二十二二十二二十二十二十二十二十二十二十二十二二十二十二十二十二十二十二	5	
	Workable and Tool Materials Heat-resistant and Scale-resistant Steels and Alloys Heat-resistant and Stale and Titanium Alloys	8	
	Heat-resistant and details High Strength Steels and Titanium Alloys	10	
	High Strength Steels and	14	
	Tool Materials	14	•
	Productive Cutting Tools Productive Cutting Tools Cutters and Hard Alloy Disk Saws Cutters and Hard Alloy Disk Drills	17	
	Small Diameter Four-Gloove Raze Hardened High Strength Steels.	. 23	
	Reamers for Floddetron date. Effectiveness in Norking harden.	29	t 5
	Taps With Corrected Profile Augustian Alloys Steels, Heat-Resistant and Titanium Alloys Steels, Heat-Resistant and Titanium Alloys Orderical Milling Cutters for Working of Heat-	39	
	nisk Slotted and Cylindrical	42	
	Resistant and Titanium Alloys Resistant and Titanium Alloys	42	•
94. The second s	Results of Study of Physical Inches	50	
	Chip Shrinkage and Relative Shear Stress-Strain State with Elementary Chip Formation		
	3/6	1941571 20 525	

in delige eta i in del ese eta i in del ese eta in ese eta ese

		ozren Kashinsil
	5	
UDC 621.9.01.669.018.25		-
MOOR		
REZNIKOV, N. I., BURMISTROV, Ye. V., et. al., Obrabotka Rezaniyem Zhar	opro-	
REZNIKOV, N. I., BURMISTROV, Ye. V., et. al., Obrabotka Rezality cm Entry Chnykh Vysokoprochnykh i Titanovykh Splavov, Moscow, Mashinostroyeniye chnykh Vysokoprochnykh i Titanovykh Splavov, Moscow, Mashinostroyeniye	Licas	
chnykh Vysokoprociniyan i iicano-y		ef.
1972, 198 pages.	55	1
Deformation, Stress and Cutting Forces	62	
Diamond and Elbor Norking Wigh Speed and Hard Alloy Tools	62	
Diamond and Elbor Norking Turning and Finishing of High Speed and Hard Alloy Tools Turning and Finishing of Cutting Tools	67	
Turning and Finishing of high opening of Cutting Tools Electrochemical Diamond Sharpening of Disks and Determination of		
Electrochemical Diamond Sharpening of Cutting 1997s Electrochemical Diamond Sharpening of Cutting 1997s Diamond-Elbor Grinding. Selection of Disks and Determination of Diamond-Elbor Grinding.	73	
Efficient Cutting Modes.		
Surface Quality, Productivity and Cottano	76	
Grinding Residual Stresses in Grinding, Their Influence on Endurance Limit	82	
Residual Stresses in Grinding, Their Influence of	87	
Diamond Smoothing of Parts Diamond Smoothing	94	. 4
Usage Properties of Parts Worked by	99 117	
Ontimal Cutting Modes	121	
Cutting Modes During Working of Optimal Cutting Modes	12‡ 126	
	126	
Use of Computers for Account and Surface Layer Quality of Worked Surfaces Micro- and Macro-geometry of Worked Surfaces	128	:
Micro- and Macro-geometry of mountain	120	
Residual Stresses		
4/6 - 87 -		
「	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	ACT TO SERVICE OF SERV

And the second s	1871 4921 271 270 271 4 1 - 	
	5	***************************************
USSR UDC 621.9.01.660.018.25		
REZNIKOV, N. I., BURMISTROV, Ye. V., et al., Obrabotka Rezaniyem Zhar chnykh Vysokoprochnykh i Titanovykh Splavov, Moscow, Mashinostroyeniy 1972, 198 pages.	opro- a Press,	
19/2, 150 pages.	128	ļ
Residual Stresses	132	İ
c person of Tangential and Axial Residual October	1.39	
nation of Gion and Magnitude Of Residual Defession	143	
	146	
Influence of Residual Stresses on Landening Formation of Surface Layer of Parts with Ultrasonic Hardening	153	
Effectiveness of Ultrasonic Oscillations During Cutting of	153	
Threads with Taps Electric Contact Heating During Turning and Cutting of Bars	158	
THE STATE OF THE SECOND STATES OF THE SECOND	162	
Work Flortrical Current During Dilling	102	
Workability and its Relationship to Rigidity and Vibration	168	
Polationship of Accuracy and Productivity of Metal-Cutting	168	
Machine Tools and their Rigidity	175	
Contact Rigidity Apparatus and Method of Studying Dynamics of Cutting and Vibration	182	•

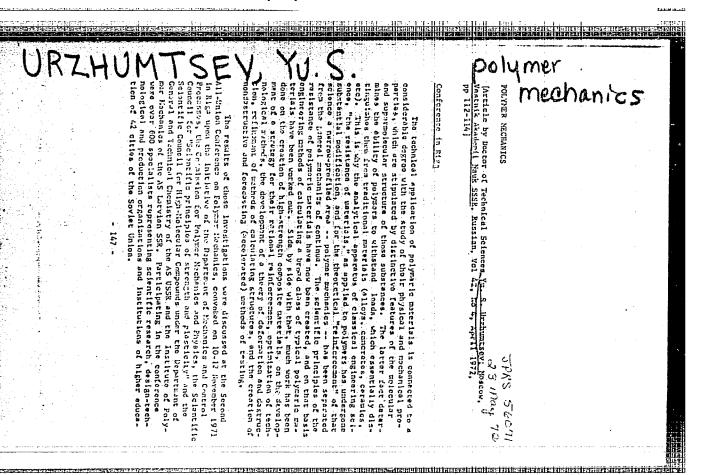
	USSR UDC 621.9.01.660.018.25								
REZNIKOV, N. I., BURMISTROV, Ye. V., et al., Obrabotka Rezaniyem Zharopro- chnykh Vysokoprochnykh i Titanovykh Splavov, Moscow, Mashinostroyeniya Press,									
1012, 130 pages.									
Tool Life and Surfac Influence of Cutting	e Quality as Fund Parameters on Vi	tions of Vibration bration Intensity	Intensity	187 190					
Bibliography				194					
			-						
2호 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1									
				•					
			•	•					

USSR

UDC: 621.317.3:[621.315.61+621.315.592]

URYVSKIY, Yu. I., SYNOROV, V. F., CHURIKOV, A. A., FOPOV, V. A., KONOHOV, V. I., LAVRENT YEV, K. A., MASLENNIKOV, P. N.

"Ellipsometric Method of Checking Dielectric and Semiconductor Films"


Elektron. prom-st'. Nauch.-tekhn. sb. (The Electronics Industry. Scientific and Technical Collection), 1972, No 2, pp 82-83 (from RZh-Radiotekhnika, No 12, Dec 72, abstract No 12A393 by A. K.)

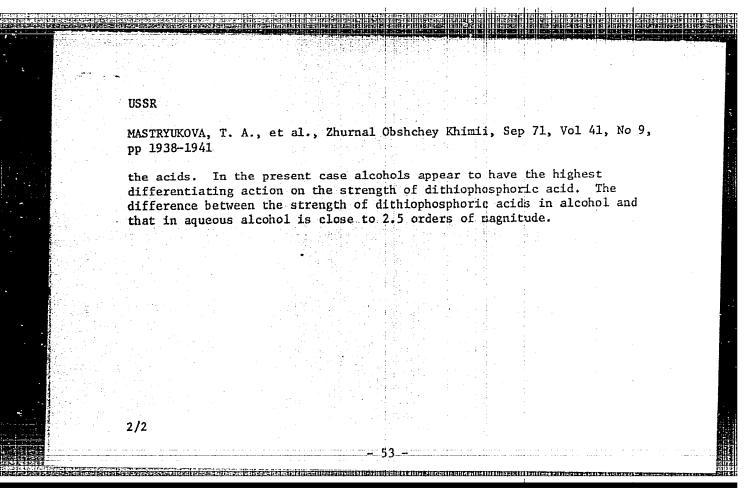
Translation: The ellipsometric inspection method is distinguished by high information capacity and resolution: It enables simultaneous measurement of the thickness and index of refraction of the film on a substrate during production with accuracy of up to 1 nm and 0.05 respectively. The method is based on determining the change in parameters of polarized light reflected from the surface being studied.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

स्वीत्रीकृत्रकेलेको स्वास्त्रकारा स्वीतिकारा १९८६ महासार स्वास स्वास स्वास स्वास स्वास स्वास स्वास स्वास स्वास

USSR


UDC 541.67:547.26'118

MASTRYUKOVA, T. A., SPIVAK, L. L., GRIGOR'YEVA, A. A., URZHUNTSEVA Ve. K. and KABACHNIK, M. I., Institute of Organoelemental Compounds, Academy of Sciences USSR, Khar'kov State University

"Ionization Constants of Dithiophosphoric Acids in Absolute Ethanol"

Leningrad, Zhurnal Obshchey Khimii, Sep 71, Vol 41, No 9, pp 1938-1941

Abstract: Measurements were made of the ionization constants of organic dithiophosphoric acids in absolute ethanol. There exists a linear relationship between the ionization constant values of acids and $\Sigma \sigma_{\dot{\rho}}$ of the substituents at the phosphorus atom. It is shown that the conditions for the solvation of molecules and anions of dithiophosphoric acids in 100% ethanol markedly differ from those in 7 and 80% aqueous ethanol. In switching from 7 to 80% ethanol, $\Delta \rho K_a$ remains constant for all acids under study. In 80 to 100% ethanol, $\Delta \rho K_a$ changes and increases from dialkyldithiophosphoric to dithiophosphonic and dithiophosphinic acids. In the former case, $\Delta \rho K_a$ depends largely on changes in the solvation energy of molecules while in the latter case, it depends on that of ions. The difference in the change of the solvation energy of ions and molecules results from the differentiating action of the solvent on the strength of 1/2

USSR

UDC 612.82.015.348-06/612.118.24:616.895.8

US. Z. G., and BOZHKO, G. JH., Kharkov Scientific Research Institute of Neurology and Psychiatry

"Effect of Blood Serum From Schizophrenics on the Renewal of Brain Proteins in Rats"

Moscow, Zhurnal Nevropatologii i Psikhiatrii, No 2, 1971, pp 253-255

Translation: Summary: The authors studied theeffect of blood serum from schizophrenics with a continuous (six persons) or remittent (24 persons) course of the disease on therenewal of proteins in the cortex, hypothalamus, cerebellum, and medulla oblongata of white rats. The incorporation of radioactive methionine into the brain proteins was an indicator of this process. Serum from patients in an active stage of the disease was found to lower the level of protein metabolism in the cerebellum, hypothalamus, and cerebral hemispheres of the animals. Serum from patients in dissociated remissions (after A. I. Ploticher) had the same effect. However, serum from patients in associated remissions had no percepetible effect on protein renewal in the areas of the rat brain under study.

It is generally known that serum from schizophrenics, unlike that from healthy persons can markedly alter cell metabolism. This fact is of 1/5

USSR

US, Z. G., and BOZHKO, G. KH., Zhurnal Nevropatologii i Psikhiatrii, No 2, 1971, pp 253-255

unquestioned value in elucidating some aspects of the pathogenesis of schizo-phrenia.

Our purpose was to compare changes in the rate of protein renewal in the rat brain after treatment with serum from schizophrenics in the acute phase of the disease and in remissions.

Blood was taken from 30 schizophrenics and 12 apparently healthy persons. Six of the former had the continuous form of the disease, while 24 had the remittent form. Tweleve of those with the remittent type were examined during an exacerbation and 12 during a remission. Attention was focused on the quality of the remissions, which were assessed according to A. I. Ploticher's classification. Patients in associated (six persons) and dissociated (six persons) remissions were distinguished accordingly.

The rats were injected with the serum intraperitoneally at the rate of 6 ml/kg daily for 3 days. The main group consisted of 42 animals. Eight intect rats served as controls. The effect of the serum was judged from the incorporation of methionine into brain proteins. Radioactive methionine was injected subcutaneously (0.5 microcurie per kg of body weight) simultaneously with serum on day 3, 24 hours before the animals were sacrificed. The incor-2/5

- 83 -

USSR

US, Z. G., and BOZHKO, G. KH., Zhurnal Nevropatologii i Psikhiatrii, No 2, 1971, pp 253-255

poration of methionine into proteins of the hemispheres, cerebellum, medulla oblongata, and hypothalamus was investigated. Radioactivity was expressed in counts per minute per mg of tissue weight. The ratio of the number of counts in the proteins to the radioactivity of methionine not incorporated into proteins served as an indicator of the intensity of protein renewal. The resulting data were statistically processed by the Student-Fisher method.

In the intact animals, the level of methionine incorporation was highest in the hemispheres and cerebellum. Medulla proteins were much less active (P < 0.01). This finding is consistent with the literature data which show that protein metabolism is more intense in portions of the brain that have a greater functional load. Methionine incorporation into proteins was also higher in the hypothalamus than in the medulla (P < 0.05).

After injection of serum from healthy persons, the activity of proteins in all the portions of the brain studied was virtually indistinguishable (i.e., with respect to the amount of the radioactive lable incorporated) from that of the proteins in the corresponding portions of the brain in the intact animals.

After injection of serum from schizophranics with a remittent course

3/5

CIA-RDP86-00513R002203420008-0"

APPROVED FOR RELEASE: 09/17/2001

USSR

US, Z. G., and BOZHKO, G. KH., Zhurnal Nevropatologii i Psikhiatrii, No 2, 1971, pp 253-255

in the acute period of the disease, the activity of the hemispheres, cerebellum, and hypothalamus was appreciably less than in the control (P < 0.05). The extent of the decrease in these structures was approximately the same (67 to 69%). The activity of proteins in the medulla oblongata, unlike the other regions investigated, was unchanged (P > 0.3).

After injection of serum from schizophrenics with a continuous course, incorporation of the labeled precursos into proteins of the hemispheres, cerebellum, and hypothalamus likewise decreased (P<0.05). However, this decrease was sharper in the hemispheres and hypothalamus (47 and 30%, respectively). On the other hand, the activity of proteins in the medulla oblongata remained as before (P-0.2).

Our findings show that serum from schizophrenics in the active stage of the disease can slow the renewal of proteins in the rat cerebellum, hypothalamus, and hemispheres.

Incorporation of the radioactive lable into proteins of the hemispheres, cerebellum, and hypothalamus after treatment with serun from schizophrenics is dissociated remission was distinctly less than in the control (P<0.05), and it scarcely differed from that observed after injection of serum from schizo-4/5

- 24 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

THE STATE OF THE S

USSR

US, Z. G., and BOZHKO, G. KH., Zhurnal Nevropatologii i Psikhiatrii, No 2, 1971, pp 253-255

phrenics with the remittent course in the acute stage of the disease (P<0.4). After injection of serum from schizophrenics in associated remission, the amount of methionine incorporated into the proteins was the same as in the control. The deviations were not statistically significant (P>0.4). These findings show that serum from schizophrenics in dissociated remission differs from serum from schizophrenics in associated remission. These characteristics were discovered from the effect of the serum on protein metabolism in the rat brain.

Thus, serum from schizophrenics with a remittent course in the acute stage of the disease and serum from those with a continuous course lower the level of protein metabolism in the cerebellum, hypothalamus, and hemispheres of rats. Serum from schizophrenics in dissociated remission has the same property.

After injection of serum from schizophrenics in associated remission, the process of protein renewal in the brain areas studied remained unchanged.

5/5

1/2 010 UNCLASSIFIED PROCESSING DATE--020CT70

TITLE -- SYNTHESIS OF 3.5, DICHLORDACENAPHTHENE -U-

AUTHOR-102)-PETRENKO, G.P., USACHENKO, V.G.

COUNTRY OF INFO--USSR

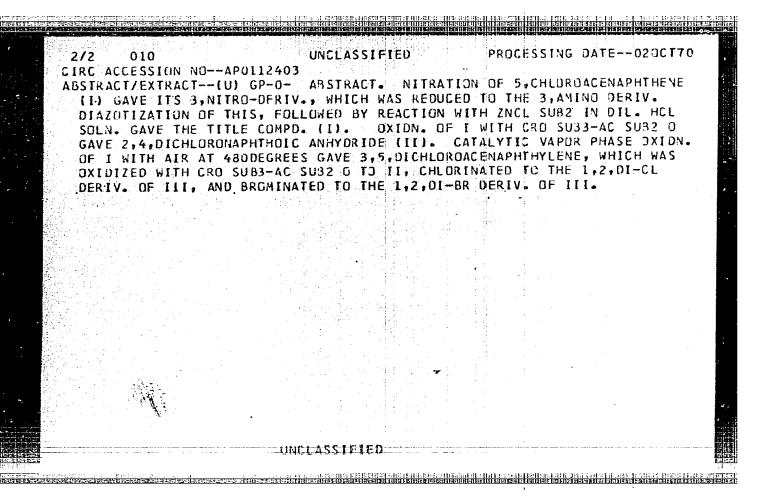
SOURCE--ZH. ORG. KHIM. 1970, 6(3) 590-2

DATE PUBLISHED ---- 70

SUBJECT AREAS-CHEMISTRY

TUPLE TAGS-CHEMICAL SYNTHESIS, CHUURINATED AROMATIC COMPOUND, DIAZOTIZATION. UXIDATION, NAPHTNENE, BROMINATED ORGANIC COMPOUND

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY RECLIERAME--1992/1409

STEP NU--UR/0366/70/006/003/0590/0592

CIRC ACCESSION NO--APOLIZAOS

----UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

Magnesius

USSR

WC 541.451545.4616 1.984.5

BOLYNETS, F. K., IDALOVA, L. V., ARAHOVSKIY, L. I., and USACHEV V. P.

"Study of the Kinetics of Compacting of Magnesium Oxide with Added Lithium Fluoride at Various Hot Pressing Temperatures"

Moscow, Izvestiya Akademii Nauk SSSR, Heorganicheskiye Materialy, Vol 8, No 2, 1972, pp 285-289

Abstract: The kinetics of compacting of magnesium oxide with added lithium fluoride (1.0 wt.%) by hot pressing in the 80-1100° C temperature interval was studied. The addition of lithium fluoride increases the rate of compacting of magnesium oxide beginning at 650° C.

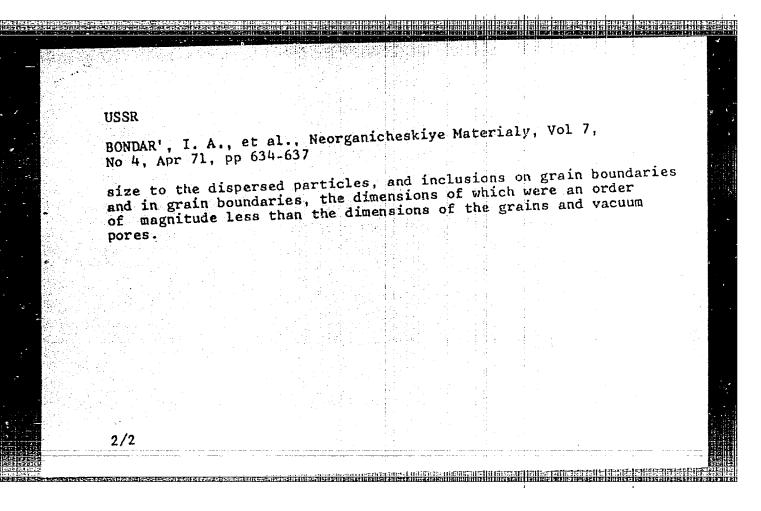
At 850-1050° C, 3 stages of compacting are observed with slopes of kinetic curves in coordinates $\log\Delta L/L_0$ from $\log\tau$ equal to 0.95-1.40; 0.33-0.36; 0.1 respectively to intervals of densities of 0.96-0.97; 0.97-0.995 and over 0.995. Processes of recrystallization of magnesium oxide with the addition of lithium fluoride during hot pressing are studied. The activation energy of the process of dependence of the increase in grain size, as 25.7 kcal/mol.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

tare a la la servició de la completa de como en la servició de la completa de la como en la como en la como en Procesa en la como en l

USSR


UDC 546.46 21:539.4.016.3

BONDAR', I. A., VOLYNETS, F. K., YDALOVA, L. V., and USACHEV, V. P.,

"Physical and Chemical Processes Involved in Heat Treatment of Polycrystalline Magnesium Oxide"

Moscow, Neorganicheskiye Materialy, Vol 7, No 4, Apr 71, pp 634-637

Abstract: A study was made of the effect of heat treatment of polycrystalline hot pressed specimens of magnesium oxide containing one wt.% lithium fluoride in air at 700-1300°C on density, grain growth, and transparency. During heat treatment, recrystallization occurred, the activation energy of which was 27.3 kcal/ mol. Recrystallization during heat treatment was accompanied by a process of recondensation of particles of the dispersed phase. The activation energy of this process, calculated from the dimensions of the dispersed particles in specimens which underwent various heat treatments, was 22.5 kcal/mol. The specimens of polycrystalline magnesium oxide studied were found to have circular formations larger than grains, inclusions comparable in 1/2

USACHEY, V.V.			a	lenos	pace. Medicine	
obsential a further study of the ctiology and puthogene and the question axisses of decementing on a sound act of effective means for its prevention and treatment. The cussion of different aspects of vestibular selection as	្ត មិនិស្សីស្ត្រី ស្ត្រី ប្រ ទី ១ ឆ្នាំ ១ ភូសិស្ត្រី ស្ត្រី ស	The heard held seven meetings during the part year and discussed warf- out appects of the organization and planning of the section's work; particu- lar attention was given to the founding of an All-durin Society in Acrogan- plotory and fortetion. Tracticipants in it heaters of the section A report by E. S. Kotova presented extensive experimental data on the interest endy of the physiological mechanisms of accelerations cateins into account the specific conditions of space flights. The author presented convincing data indirectes and veins during accelerations. In the freedance district, present the specific phase changes in various time and also on the cations of reliable arteries and veins during accelerations. In the freedance attention, paychal- mic artery exhibited hypertension which was then replaced by hyperensia. The specifical voins on the fitting algorith and cloweith days after the experiment, evidence of a prolonged aftereffect period.	Articl Hedit	UNIC 613.693:061.22.655.1(476.311)*1950** HORE OF THE ABROSINGE PERICIPE SECTION OF THE MOSCON PRINSINGOLOM SOCIETY IN	Medicine Society State	G C F

omori endigendi mengangan i mengangan mengangan mengan mulangan pengan pengangan pengangan menganan Seserengangan mengangan mengangan mengangan mengangan mengan pengengan pengengan pengengan pengengan mengangan

USSR

USACHEY. Ye. S.

"The Realization of a Stochastic Model of Automation"

Issled. po Teorii Samonastrayivayushchikhsya Sistem [Studies on the Theory of Self-Tuning Systems -- Collection of Works], Moscow, Acad. Sci. USSR Computer Center, 1971, pp 207-222, (Translated from Referativnyy Zhurnal, Kibernetika, No 3, 1972, Abstract No 3 V331 from the Introduction).

Translation: A sequence of probabilistic automata is constructed, approximately imitating a stochastic model of learning. The construction is based on replacement of a continual automaton which is a model of learning with a finite automaton.

1/1

USSR

UDC 542.91 + 547.297 + 547.558.2

USACHEVA, G. M., and KAMAY, G. KH. (Decreased), Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Acad. Sc. USSR

"Reaction of Acetyl Bromide With Triphenylarsine Oxide"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 1, Jan 71, pp 168-169

Abstract: The reaction of acetyl bromide with triphenylarsine oxide, taken in a 2:1 ratio, in toluene yields triphenylarsine bromide and acetic anhydride as well as unreacted starting materials. Triphenylarsine bromide is hydrolyzed easily to triphenylhydroxyarsine bromide. In the infrared triphenylarsine bromide exhibits absorption bands at 1003, 1027, 1076, 1458, and 1560 cm⁻¹.

1/1

Dir-

Organometallic Compounds

USSR

UDC 539.193:547.242

KONDRAT'YEVA, O. I., TROITSKAYA, A. D., CHADAYEVA, N. A., CHUYKOVA, A. I., USACHEVA, G. M., and IVANTSOV, A. Ye., Kazan' Chemical Technological Institute Imeni S. M. Kirov and Kazan' Institute of Organic and Physical Chemistry Imeni A. Ye. Arbuzov, Academy of Sciences USSR

"Investigation of the Complex Compounds of Chromium (I) With Organic Derivatives of Arsenic by the EPR Method"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 9, Sep 73, pp 2087-2088

Abstract: Eight new complex compounds of chromium (I) with organic derivatives of arsenic (III) were obtained in acetone solution. The reaction occurred instantaneously at room temperature with a slight excess of the arsenic component. It was found that changes even in remote areas surrounding arsenic had a definite effect on the characteristics of the chromium(1)-arsenic(III) bond, which could be due to a possible decrease of the participation of S electrons in formation of spⁿ-hybrid orbitals.

1/1

Pesticides

USSR

UDC 542.91+547.297+546.14+547.242

USACHEVA, G. M., KAMAI, G. Kh. Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Academy of Sciences USSR

"Reaction of Tertiary Arsine Sulfides with Acid Halides. III. Reaction of Phenyldiethylarsine Sulfide with Acetyl Bromide"

Leningrad, Zhurnal Obshchei Khimii, Vol 40, No 6, Jun 70, pp 1306-1310

Abstract: The reaction of acetyl bromide with phenyldiethylarsine sulfide at reagent ratios of 1:1 and 2:1 was studied. In the first case, the reaction proceeds rather vigorously at 20-25° and is completed after 16-17 hours. A mixture of thioanhydride of phenylethylarsinous and acetic acid, phenylethylbromoarsine, and ethyl diacetate was obtained. No pure ethyl bromide was detected. Composition of the mixture varies with different reaction times and temperatures. When the starting materials were used at a 2:1 ratio, the reaction takes place considerably more slowly at 20-250 and is completed after 240-250 hours. Distillation of the reaction mixture showed that ethyl promide was present together with the mixed thioanhydride of phenylethylarsinous and acetic acids, as well as phenylethylbromoarsine.

1/1

itari. Religios de la composição
USSR

UDC 542.91 + 547.297 + 547.558.2

USACHEVA, G. M., KAMAY G. KH., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Academy of Sciences USSR

"Reaction of Acyl Chloride With Triphenylarsine Oxide"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 6, Jun 70, pp 1432-1433

Abstract: The reaction of acyl chloride with triphenylarsine oxide taken in a 2:1 ratio in anhydrous toluene yields triphenylarsine dichloride (I) and a mixture of acetic anhydride, toluene, and the starting acyl chloride. The structure of (I) was assigned on the basis of IR spectroscopic data and mixed melting point determination with independently synthesized (I). Also, (I) was hydrolyzed to triphenylarsinehydroxychloride (II) whose IR spectrum and melting point is identical with independently synthesized (II).

1/1

- 48 -

Magnesium

USSR

UDC 669.295.004.2

AKIMOVA, N. A., KARVATSKAYA, R. A., USACHEVA, L. A., and PAVLYUK, YU. S.

"Desalinization of Waste Water in Titanium-Magnesium Production"

Sb. tr. Vses. n.-1. i proyektn. in-t titana (Collection of Works of the All-Union Scientific Research and Design Institute of Titanium), 1970, B, pp 109-113 (from RZh-Metallurgiya, No 11, Nov 70, Abstract No 11G156)

Translation: Investigations are conducted of the desalinization of waste water from a gas purification installation in Mg production (hypochlorite pulp). A principal diagram for the neutralization and desalinization of waste water is proposed: filtration, breaking down of Ca(OC1), in HCl filtrate, thereafter of phenol water, vacuum evaporation, evaporation in steel boats. As a result, a melted CaCl₂ is obtained which corresponds to GOST 450-58.

2 ill., 4 tables.

Authors' abstract

1/1

USSR

UDC 628.3+669.295

AKIMOVA, N. A., KARVATSKAYA, R. A., USACHEVA, L. A., and KOVALEV, V. Ya.

"Semiindustrial Experiments on Removing Suspended Substances and Oils From Runoff Waters"

Moscow, Metallurgiya i Khimiya Titana (Institut Titana), Metallurgiya Publishing House, Vol 6, 1970, pp 143-145

Translation: A description is given of the results of industrial tests on purifying runoff at the DTM [expansion unknown] Plant of suspended substances and oils by mixing neutralized and slightly polluted runoff in a ratio 1:2.5 or 1:2, introducing polyacrylamide in the amount of 0.1-0.2% of the suspended substances, and subsequent standing for one hour. It is demonstrated that under such settling pool operating conditions, a clear, colorless, purified 75% (volumetric) amount is received, which contains an average of 10.4% mg/liter of suspended substances, and no oil. In the settled deposit, the content of the hard part averages 2% and water 98%. After five hours of settling in a separate reservoir, consolidation of the deposit practically ends and the content of the hard part averages 3.6%. One illustration and two tables.

USSR

UDC 669,295.004.2

ALIMOVA, N. A., KARVATSKAYA, R. A., USACHEVA, L. A., and KOVALEV, V. YA.

"Pilot Plant Experiments on Purification of Waste Water to Remove Suspended Materials and Oils"

Sb. tr. Vses. n.-i. i proyektn. in-t titana [Collected works of All-Union Scientific-Research and Planning Institute for Titanium], 6, 1970, 143-145, (Translated from Referativnyy Zhurnal-Metallurgiya, No. 1, 1971, Abstract No.1 G198 by the authors).

Translation: Results are presented from industrial tests of a method for purification of titanium plant waste waters to remove suspended material and oils by mixing neutralized and little-contaminated water in a ratio of 1:2.5 or 1:2, introduction of polyacrylamide at 0.1-0.2% of the weight of suspended materials, and subsequent settling for one hour. With this mode of settling, the waste water becomes clear and colorless in 75% of its volume; this clear volume contains 10.4% mg/l suspended material, and no oil. The content of solids in the lower portion is about 2%, water 98%. After five hours settling, the compaction of the sediment is practically complete; the content of solids is then about 3.6%. I figure; 2 tables.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

wc 632.95 USSR MURIDZHANYAN, K. A., BLINOVA, V. G., STOMOV, L. D., BARULINKO, L. A., and USACHEVA, N. H. "Concerning the Herbicidal Activity of Certain Aryl- and Alkyl-Containing Thiowrides, Thioureas and Thiouracils" V sb. Khim sredutva sachchity rast. (Chemical Agents for Plant Protection -collection of works), vyp 1, Moscow, 1970, pp 197-200 (from RZh-Khimiya, No 11, Jun 72, Abstract No 118445) Translation: The following compounds were synthesized: 3-R-methyl-2-thiouracils (I) (R and the nelting point in °C are cited): No. 261-5; Et. 202-3; Pr. 172-3; Bu, 163-4; ico-Bu, 214; C6H13, 120; Ph. 256; C-C1C6H4, -; substances with the formula PhCONHCSNHR (II) (R and the melting point in °C are cited): Me, 150; Et, 133; Pr, 133; iso-Pr, 113-4; Bu, 51-2; tert-Bu, 127-8; CgH17. 152-3; Ph. 143; o-C1C6H4, 145-6; p-02NC6H4, 182; p-M32NC6H4, 166-7; and substances with the formula N2NCSHR (III) (R and the melting point in °C are cited): Ne, 103; Et, 103; iso-Pr, 157; Bu, 79; iso-Bu, 93.5; tert-Bu, 165; C6H13, 83; 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

lyenessy fretterseletytet (virkleistetytet) in seinel 10 seut 10 km on om 10 km och 10 km och 10 km och 10 km o District besenst in som introduction och 10 km och

USSR

MURIDZHANYAN, K. A., et al., V sb. Khim. sredstva zashchity rast., Vyp 1, Hoscow, 1970, pp 197-200

C₈H₁₇, 97; Ph, 154; o-CiC₆H₄, 142; p-O₂NC₆H₄, 190; p-Ke₂NC₆H₄, 182-3. Compounds I show higher herbicidal activity with respect to monocotyledons and dicotyledons than the corresponding wracils. Data are presented from tests of compounds II and III.

2/2

USSR

WC 632.95

STONOV, L. D., BAKUMENKO, L. A., USACHEVA, N. M., HANDEL'BAUM, YA. A., and BAKANOVA, Z. M.

"A Herbicide"

USSR Author's Certificate No 347045, filed 9 Mar 71, published 6 Sep 72 (from RZh-Khimiya, No 10, May 73, Abstract No 101605F by T. A. Belyayeva)

Translation: 0-(2-Nitrophenyl)-0-methyl-N-n-propylanidothiophosphate (I) in a dose of 1-2 kg/ha is proposed as a herbicide on fields of flax and vegetable crops. With application before sprouting, the activity of (I) in 67-87, amaranth 75-88, flax and radish 0. The compound can be used in a mixture with other active compounds to broaden its spectrum of action.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

USSR

UDC 632.95

MEL'NIKOV, N. N., STONOV, L. D., KHASKIN, B. A., GORDON, O. C., USACHEVA, N. M., SAELINA, I. V., GRUZINSKAYA, N. A.

"New Herbicide and Desicant -- Bipyridyl Phosphate"

V sb. Khim. sredstva zashchity rast. (Chemical Means of Plant Protection -- collection of works), No 1, Moscow, 1970, pp 167-173 (from RZh-Khimiya, No 12, Jun 72, Abstract No 12N492)

Translation: A series of phosphorus-containing salts of 4,4'-bipyridylium with the formula $[NC_5H_4-C_5H_4NCH_3]^+[(RO)OP(=X)YR']^-$ (I) (R, R', X, Y, the yield in %, the melting point in °C, n²⁰D are presented): Ne, Me, 0, 0, 58, 95-102, --; Me, Pr, 0, 0, 60, --; 1.4190; Me, Me, S, 0, 59, 210 (dil.), --; Me, Me, S, 5, 51, 106-7.5, --; Me, 2,4,5-Cl₃C₆H₂, S, 0, 67, 84-5, --; Et, 2,4,5-Cl₃C₆H₂, S, 0, 44, --, 1.6141 were synthesized. In order to obtain I, equimolecular amounts of 4,5-bipyridyl and esters of phosphorus acids were heated for 15-20 hours in a solvent (C_6H_6 , alcohol, petroleum ether) at 40-100°. With alkylation of the 4,4'-bipyridyl in an excess of esters of phosphorus acids with

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

THE THE PROPERTY OF THE PROPER

USSR

MEL'NIKOV, N. N., et al., Khim. sredstva zashchity rast., No 1, Moscow, 1970, pp 167-173

heating (70-100°)' for 10-15 hours in the absence of a solvent or at 20-25° for 2-3 weeks, substances with the formula $[CH_3NC_5H_4-C_5H_4NCH_3]^{2+}[(RX)OP(O)YR^*]^{2-}$

(II) are obtained (R, R', X, Y, the yield in %, and the melting point in %C are presented): Me, Me, O, O, 63, 117-120 (IIa); Me, Me, S, O, 34, 52-61.5; Me, Et, S, O, 30, 78-80; Me, Me, S, S, 68, 138 (dil.); Me, Et, S, S, 61, 118 (dil.); Me, 2,4,5-Cl₃C₆ll₂, S, O, 80, 166 (dil.). The IIa has low toxicity for warm blooded animals, significant herbicidal activity and a high defoliating effect.

.

. 63 -

TITLE--DETERMINATION OF THE ACTIVITY OF PHENYLALANINE HYDROXYLASE IN THE
HEPATIC TISSUE -UAUTHOR-(05)-POKROVSKIY, A.A., USACHEVA, N.T., MILQVA, G.N., YERMOLAYEV,
M.V., YERMOLOV, A.S.

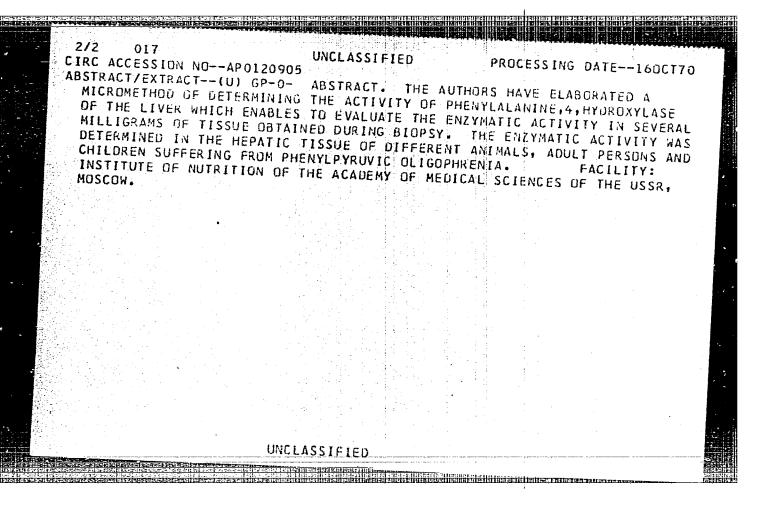
COUNTRY OF INFO--USSR

SOURCE--BYULLETEN' EK SPERIMENTAL'NOY BIOLOGII I MEDITSINY, 1970, VOL 69,
NR 5, PP 122-124

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES
TOPIC TAGS--LIVER, ENZYME ACTIVITY, BIOPSY, PHENYLACANINE

CONTROL MARKING--NO RESTRICTIONS


PROXY REEL/FRAME--1998/0207

STEP NO--UR/0219/70/069/005/0122/0124

CIRC ACCESSION NO--AP0120905

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

CIA-RDP86-00513R002203420008-0

USSR

UIC 616.273.2:612.288

AGADZHANYAN, N. A., EFESIAV, I. S., KONZA, E. A., USAKOVA, N. A., and YELFIMOV, A. I., Institute of Physiology imeni I. P. Pavlov, Academy of Sciences USSR, Leningrad

"The Role of Peripheral Chemoreceptors in Reactions of Rats Subjected to Short-Term and Prolonged Hypoxia"

Moscow, Byulleten' Eksperimental'noy Biologii i Meditsiny, Vol 74, No 10, 1972, pp 11-15

Abstract: The role of the deafferentated synocarotid and aortic reflectogenic zones on respiratory, cardiovascular, and thermoregulatory activities of rats subjected to hypoxia was studied. The ventilation in intact rats breathing with the air containing 11% (PO₂ = 83.6 mm Hg), increased by 20.3% compared with the normal air respiration. No noticeable changes were observed on rats with deafferentated synocarotids on both sides and breathing with the same hypoxia mixture. The same was true for rats with deafferentated aortic zone. A rapid elevation (25 m/sec) of intact rats to 1000-7000 m produced a rapid breathing. The same was observed in deafferentated rats but it occurred much later and was 15-25% lower than in intact rats. The number of heart beats in both groups of animals increased, without any significant difference between them. The severe hypoxia at 7000 m inhibited sharply both the respiration and

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

USSR

ACADZHANYAN, N. A., et al., Byulleten' Eksperimental'noy Biologii i Meditsiny, Vol 74, No 10, 1972, pp 11-15

the cardiovascular activity. A decrease in the pO, in the thigh muscle of the deafferentated rats was more noticeable under severe hypoxia. When anicals spent 30 min at 5000 m elevation ($pO_2 = 85$ mm Hg), the number of respirations increased during the first 10 min and was high during the entire exposition time, but was lower in deafferentated rats. There were no significant differences in the reactions of the cardiovascular and thermoregulatory systems at this elevation. A complete exclusion of the synocarctid chesoreceptors lowered in pO2 pressure in the thigh muscles of the deafferentated rats at 5000 m elevation (barochamber) with low oxygen concentration. Intact and deafferentated rats died within 86 and 68 seconds, respectively at 12,280 m elevation. No significant changes in the ventilation system were observed among both groups of rats placed in chambers with 11% oxygen for 30 days. It is concluded that the peripheral chemoreceptors play a definite role in a total adaptation of the animal organism to oxygen deficiency. At the same time, the synocarotic chemoreceptors do not play any significant role in reactions of the cardiovascular and thermoregulatory systems in response to hypoxia. Since the synocarotid deafferentation did not produce significant changes in the adequate ventilation in response to hypoxia it can be assumed that other chemosensitive systems, yet unknown, take part in this process.

- 50 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

USSR

UDC 576.2+591.1/.4

AGADZHANYAN, N. A. and USAKOVA N. A., Institute of Medical and Biological Problems, Muscow

"The Effect of Acute Hypoxia on the Organism of Animals with "Denervated" Carotid Sinus Zones"

Moscow, Doklady Akademii Nauk SSSR, Vol 198, No 1, 1971, pp 236-

Abstract: To investigate a possible correlation between shifts taking place in respiration and those occurring in other functional systems during hypoxia, tests were performed on male rats in a barochamber in which air pressure was reduced, to a simulated altitude of 12 km. Out of a total of 27 rats, 11 had bilaterally "denervated" carotid sinus chemoreceptors. The "denervation" was performed under nembutal anesthesia through treatment of both carotid bifurcations with 10% phenol. Control animals were subjected to identical surgery; however, no phenol was applied. The following parameters were neasured: respiratory

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

es de surente. La companya de companya de la companya de la companya del companya de la companya del la companya de la compan USSR

AGADZHANYAN, N. A. and USAKOVA, N. A., Doklady Akademii Nauk SSSR, Vol 198, No 1, 1971, pp 236-239

rate, EKG, rectal temperature, and oxygen tension in a hip muscle. The respiratory rate increased in both groups up to a simulated altitude of 7 km; however, the rise was faster in the control group and the difference was statistically significant. With further increase in altitude, respiration was increasingly more depressed and, at an altitude of 12 km, it fell to a level some three times smaller than the control rate. Correspondingly, muscle tissue hypoxia was greater in the experimental group, and the difference was statistically significant at simulated altitudes from 4 to 8 km. The heart rate increased slightly up to the simulated altitude of 7 km and then rapidly declined with a further rise in altitude; however, there was no statistically significant difference between the two groups. Rectal temperature was gradually falling with rises in altitude, to reach a minimum of 0.6°C below the initial level in the control group and 0.43°C below the initial level in the experimental group. The results indicate that aortic arch chemoreceptors and 2/3

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

USSR

AGADZHANYAN, N. A. and USAKOVA, N. A., Doklady Akademii Nauk SSSR, Vol 198, No 1, 1971, pp 236-239

possibly other peripheral and central receptors can partly but not completely compensate for the carotid sinus chemoreceptors, and that the carotid sinus chemoreceptors exert no effects on cardiovascular and temperature-regulating centers.

3/3

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

र्वत्री शासिकासस्य सम्बद्धाः स्थापनायाः । सम्बद्धाः सम्बद्धाः सम्बद्धाः सम्बद्धाः । सम्बद्धाः । सम्बद्धाः । सम्बद्धाः । सम्बद्धाः । सम्बद्धाः । सम्बद्धा

USSR

U

UDC 576.851.513.095.57.095.18

STOLYAROVA, L. G., USAKOVSKAYA, T. S., TSEYTLIN, P. I., and PEKHOV, A. P., Institute of Experimental Biology, Academy of Medical Sciences USSR, Moscow

"The Effect of Nitrous Acid on the Capacity of DNA to Inhibit Transformation of Bac. subtilis"

Moscow, Byulleten' Eksperimental'noy Biologii i Meditsiny, No 3, 1970, pp 81-84

Abstract: The effect of nitrous acid on the capacity of ENA to inhibit transformation of Bac. subtilis was studied using calf thymus ENA treated with a 2 M solution of NaNO₂ for 20, 40, and 60 min. In control experiments, the effect of NaNO₂ on the transformation activity of DNA was studied. It was determined that 20 min treatment of DNA with NaNO₂ augments its inhibiting activity. Longer treatment reverses the order, so that after a 60 min treatment, the inhibition process is completely suppressed.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

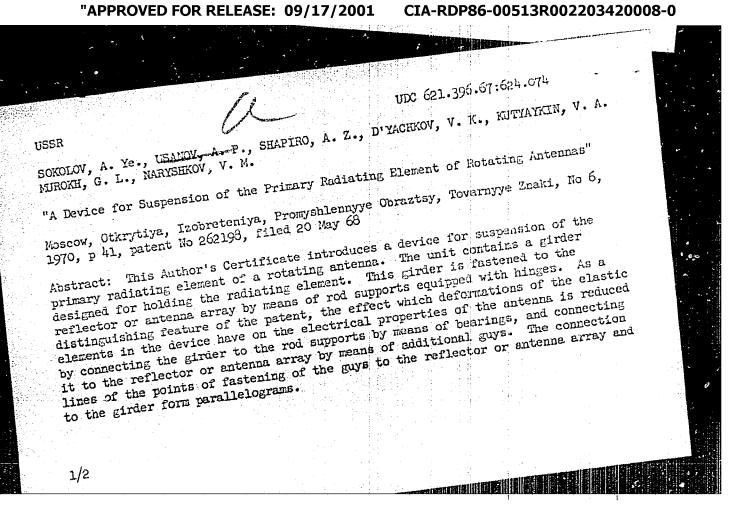
AT ANGELIARE DE CARRETE DE LA SELECTION DE LA LA COMPTE DE LA LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE LA COMPTE DE LA COMP

USSR

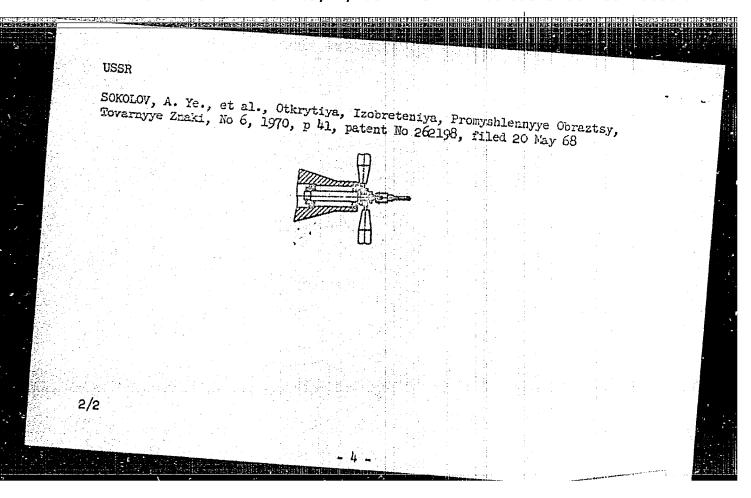
UDC: 621.396.67:624.97(088.8)

SOKOLOV, A. Ye., USANOV. A. P., SHAPIRO, A. Z., D'YACHKOV, V. K., KUTYAYKIN, V. Ya., MUROKH, G. L., NARYSHKOV, V. M.

"A Device for Suspending the Radiating Element of Rotating Antennas"


USSR Author's Certificate No 262198, filed 20 May 68, published 3 Jun 70 (from RZh-Radiotekhnika, No 11, Nov 70, Abstract No 11B77 P)

Translation: This Author's Certificate introduces a device for suspending the radiating element of rotating antennas. The device contains a girder designed for fastening the radiating element, this girder being fastened to the reflector or antenna array by rod supports equipped with hinges. In order to reduce the effect which deformations of the elastic elements have on the electrical parameters of the antenna, the girder is connected to the rod supports through bearings, and to the reflector or antenna array through auxiliary guys, the lines which connect the points of fastening of these guys to the reflector or antenna array and to the girder forming a parallelogram. Two illustrations. Resume.


1/1

. 15 ...

CIA-RDP86-00513R002203420008-0

CIA-RDP86-00513R002203420008-0" APPROVED FOR RELEASE: 09/17/2001

USSR

UDC: 621.376.32

USANOV A S

"Relative Angular Modulation and the Principle of its Optimum Demodulation"

V sb. Materialy Nauch.-tekhn. konf. Leningr. elektrotekhn. in-t svyazi. Vyp. 1 (Materials of the Scientific and Technical Conference of Leningrad Electrical Engineering Institute of Communications--collection of works, No 1), Leningrad, 1971, pp 3A100)

Translation: The authors consider the possibility of correlation reception of FM signals in which the modulation has a single-valued increase of the frequency and phase of the signal on a time interval. Resume.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

USSR

UDC 621.476.223.029.64.001.24

BARANOV, L. I., GAMANYUK, V. B., KLIMOV, B. N., USANOV D. A.

"On Calculation of Microwave Semiconductor Waveguide Resonators"

Moscow, Radiotekhnika i Elektronika, Vol 16, No 8, Aug 71, pp 1437-1441

Abstract: One type of waveguide modulator is a section of rectangular waveguide which contains a semiconductor diode in the form of a thin plate located in the center of the waveguide parallel to the narrow wall. Modulation is achieved by varying the conductivity of the base region of the diode. Theoretical and experimental data are compared and discrepancies can be used for the design of modulators based on laminar structures. The authors thank G. Ya. Nikushkin and S. N. Zorya for considerable assistance in the experimental research.

1/1

- 1.73 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

Miles Treed

1/2 019 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--HORMONAL REGULATION OF PHOSPHOENOLPYRUVATE CARBOXYKINASE ACTIVITY
IN LIVER AND KIDNEY OF ADULT ANIMALS AND FORMATION OF THIS ENZYME IN
AUTHOR--USATENKO. M.S.

COUNTRY OF INFO--USSR

SDURCE--BIOCHEM. MED. 1970, 3(4), 298-310

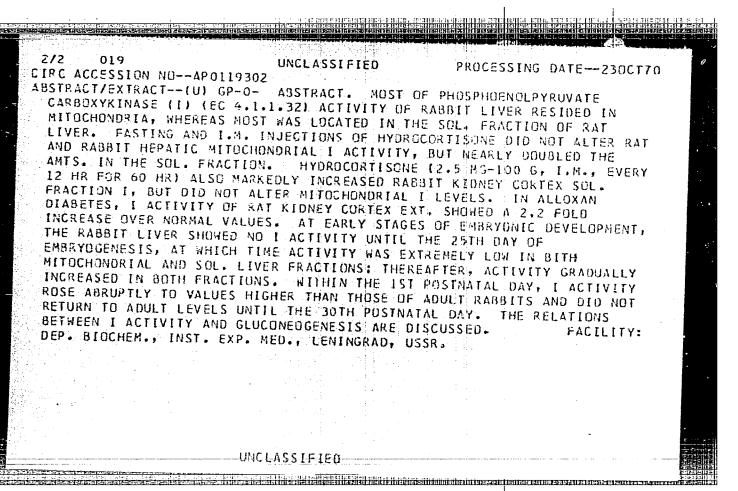
DATE PUBLISHED ---- 70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--LIVER, KIDNEY, RABBIT, ENZYME ACTIVITY, HYDROCORTISONE, MITOCHONORION, DIABETES MELLITUS

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0315


STEP NO--US/0000/70/003/004/0298/0310

CIRC ACCESSION NO--APO119302

----UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

Residence de la compactación de

1/2 019

ITTLE--THE ACTIVITY OF THE ENZYMES OF GLUCONEGENESIS FROM THE LIVER OF TEH AUTHOR-(02)-DAUDDOVA, G.M., USATENKO, M.S.

COUNTRY OF INFO--USSR

SOURCE--ZHURNAL EVOLYUTSIONNOY BIOKHIMII I FIZIOLOGII, 1970, VOL 6, NR 1, DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--ENZYME ACTIVITY, LIVER, GLUCOSE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1983/1293

STEP NO--UR/0385/70/006/001/0035/0041

CIRC ACCESSION NO--AP0054181

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

UNCLASSIFIED

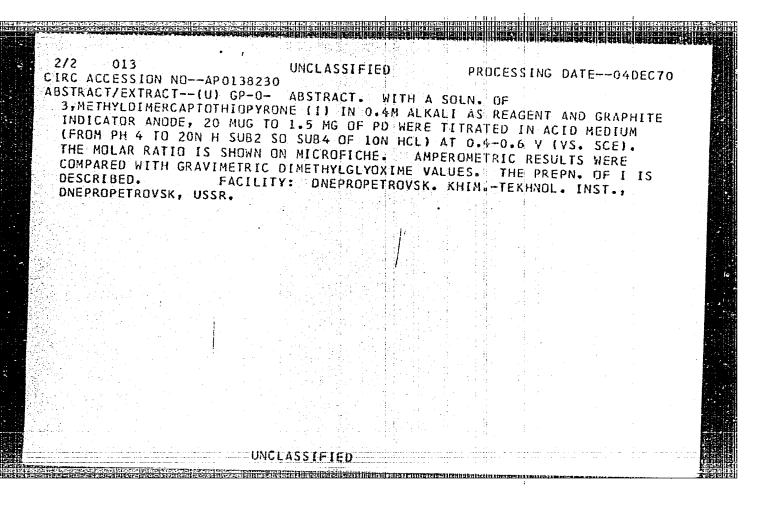
2/2 UNCLASSIFIED PROCESSING DATE--18SEP70 CIRC ACCESSION NO--APO054181 ABSTRACT/EXTRACT--(U) GP-O-ABSTRACT. HIGH ACTIVITY OF KEY ENZYMES OF GLUCONOCOGENESIS PHOSPHOENOLPYRUVATE CARBOXYKINASE (PEPK ASE) AND GLUCOSE-6-PHOSPHATASE (GGPASE) HAS BEEN OBSERVED IN THE LIVER OF THE GROUND SQUIRRELS DURING ACTIVE PERIOD (JULY, AUGUST). AT THIS TIME OF YEAR, THE ACTIVITY OF PEPKASE OF THE SOLUBLE FRACTION WHICH IS LIMITING TO THE OVERALL RATE OF GLUCONEOGENESIS, WAS CONSIDERABLY LOWER THAN THE ACTIVITY OF THIS ENZYME IN MITOCHONDRIA ON THE ACTIVITY OF GEPASE OF THE EXTRACT (CORRESPONDINGLY 2.1, 15.9 AND 5.9 MUMALES+MIN-G OF WET WEIGHT OF THE LIVER AT 37DEGREES). JUST BEFORE HIBERNATION AND ESPECIALLY DURING THE LATTER, THE ACTIVITY OF PEPKASE IN MITOCHONDRIA DECREASED, WHEREAS THAT IN THE SOLUBLE FRACTION INCREASED. CHANGES IN THE ACTIVITY OF GOPASE WERE SIMILAR TO THOSE IN THE ACTIVITY OF PEPKASE OF THE SOLUBLE FRACTION, ALTHOUGH THEY WERE LESS SIGNIFICANT. THE INCREASE IN THE ACTIVITY OF GEPASE AND PEPKASE OF THE SOLUBLE FRACTION OF THE LIVER DURING HIBERNATION INDICATES THE INCREASED ROLE OF GLUCONEOGENESIS IN MAINTENANCE OF THE REQUIRED LEVEL OF GLYCAEMIA IN THE ORGANISM. HOURS AFTER ARTIFICIAL AWAKENING THE ACTIVITY OF GEPASE AND PEPKASE IN THE FRACTIONS STUDIED WAS ESSENTIALLY THE SAME AS IN HIBERNATING ANIMALS. 24 HOURS AFTER ARTIFICIAL AWAKENING (ANIMALS REMAINED UNFED) DNLY THE INCREASE IN THE ACTIVITY OF PEPKASE IN BOTH LIVER FRACTIONS WAS

UNCLASSIFIED

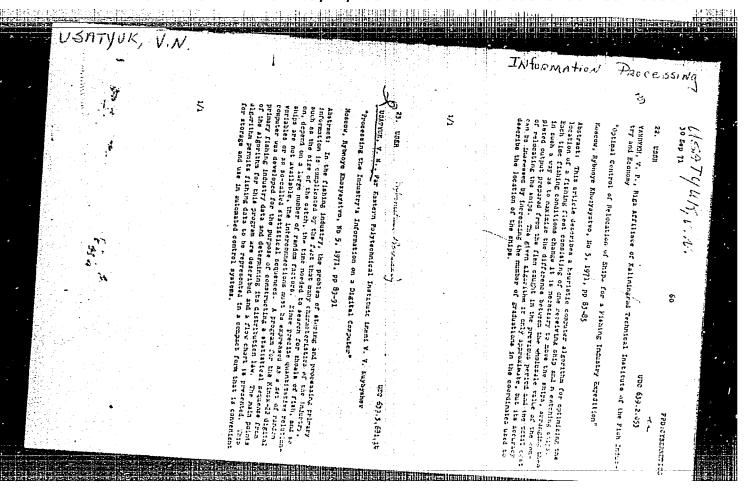
UNCLASSIFIED PROCESSING DATE--04DEC70
BATHS -UAUTHOR-(04)-ARISHKEVICH, A.M., PITSYK, O.I., ZAMORSKAYA, T.V., USATENKO,
COUNTRY OF INFO--USSR
SOURCE--ZAVOD. LAB. 1970, 36(3), 265-7
DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS, CHEMISTRY

TOPIC TAGS--PALLADIUM, METAL CHEMICAL ANALYSIS, AMPEROMETRIC TITRATION


CONTROL MARKING--NO RESTRICTIONS

OCCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3008/1215


STEP NO--UR/0032/70/036/003/0265/0267

CIRC ACCESSION NO--APOI38230

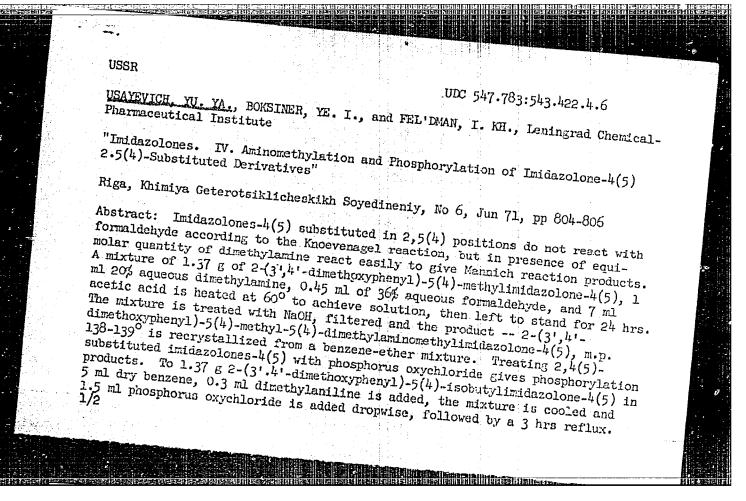
UNCLASSIFIED

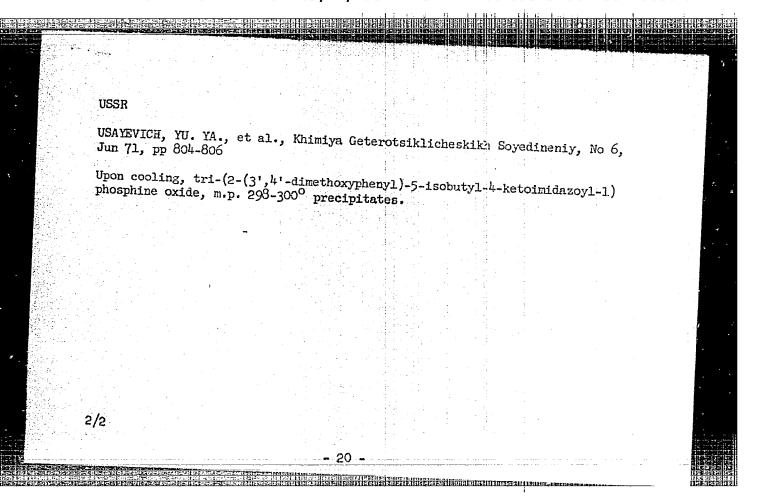
"APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0

USSR

UDC 620.186:621.785.539:534-8

USATYY, YU. P., Moscow Automobile and Road Institute


"Formation of a Calorized Layer on Armco Iron Under the Influence


Moscow, Metallovedeniye i Termicheskaya Obrabotka Metallov, No 2,

Abstract A combined study of the diffusion parameters during formation of a calorized diffusion layer on Armco iron under the influence of ultrasound was performed in comparison with ordinary calorizing. Ultrasonic oscillations were found to accelerate the process of calorizing of technically pure iron, increasing the depth of the calorized layer. The activation energy of diffusion is significantly decreased by the ultrasound, particularly in specimens rigidly attached to the waveguide. Direct application of ultrasonic oscillations to the specimen decreases the concentration of aluminum in the surface films and decreases the slope of the concentration curves, indicating an increase in the effective diffusion coefficient.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

USSR		
USENBAYEV. A., Candidate of M	edical Sciences	•
	be Blood Recovery Processes in Doro	
Frunze, Vliyaniye vysokogor'ya (cf. English above), Izdatel'a	a na protsessy vosstanovleniya krov stvo Kyrgyzstan, 1972, p 159	i i donorov
Translation: Introduction	Contents	
Chapter I		3
attaheat. TT	tion of the Blood at High Altitudes	6
negeneration of Bloom 4	y in Donors After Giving Blood n Donors under the Conditions of a function of the Total Amount of	32
Regeneration of Blood in	n Donors as a Function of Age Under	50
Regeneration of Blood in	B Donors During Different Seasons of	66
Chapter III	Itions of Frunze	81
Regeneration of Blood in Donors Hypoxia 1/2	5 Under Conditions of High Altitude	96
	-)4 -	II DE CENTRE LES CONTRACTOR LES CONT

usir		
USENBAYEV, A., Vliyar donorov, Izdatel'stvo	iye vysokogor'ya na protsessy vosstanovleni Kyrgyzstan, 1972, p 159	ya krovi i
Regeneration of Regeneration of Narva	f Blood as a Function of Amount of Blood Gi S Blood as a Function of Age in Donors in the	ven 96 ne City
Donors	ators During the Blood Regeneration Process	in
Donors After	tion of Erythropoietic Activity of the Bloo	118
	tion of Family	_
Donors in the	City of Name	133
Donors in the Conclusion	tion of Erythropoletic Activity of the Bloo City of Naryn	133 138 145
Donors in the Conclusion	City of Naryn	138
Donors in the Conclusion	City of Naryn	138
	City of Naryn	138
Donors in the Conclusion	City of Naryn	138
	City of Naryn	138
	City of Naryn	138

USSR

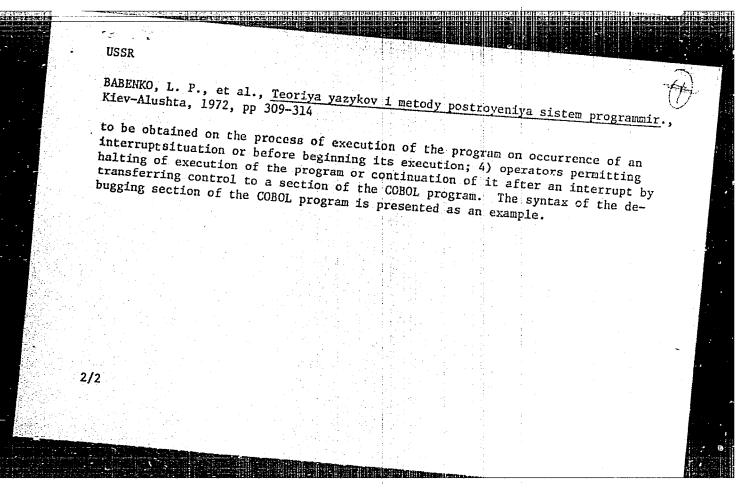
USERAYEVA, G. K., KARPOVICH, L. G., and LEVKOVICH, Ye. N., Institute of Poliomyelitis and Virus Encephalitides, Academy of Medical Sciences USSR

"Characteristics of the Pathogenesis of Infection in Mice Caused by Virulent and Attenuated Variants of Tickborne Encephalitis Virus and Langat Virus"

Moscow, Voprosy Virusologii, No 4, Jul/Aug 70, pp 482-488

Abstract: Experiments on white mice showed that the TR-21 strain of langat virus and its attenuated variant TP-21-237, and the attenuated PAN-114 variant of tickborne encephalitis virus are peculiar with respect to the pathogenetic characteristics of the infection that they produce in animals. These viruses possess genetically stable markers, notably misc and II, and thus differ from the virulent "wild" THE virus. The TP-21 strain, its TP-21-237 variant, and the Pan-114 variant of THE virus, which possess mNic+, mNsc, and III or II markers, are less active than the virulent Pan strain, multiply for a shorter period of time in such organs as the lymph nodes and intestine, are absent in infectious form in the brain and spinal cord, and exhibit a low level of viremia. Subcutaneous inoculation of mice with the attenuated Pan-114 and T-21-237 variants results in a latent injection.

1/1


USSR

BABENKO, L. P., DOVGOPOLAYA, L. I., TROKHIMENKO, V. S., USENKO, R. D., YUSHCHENKO,

"Debugging Media in a Programming System"

V sb. Teoriya yazykov i metody postroyeniya sistem programmir. (Language Theory and Methods of Constructing Programming Systems--collection of works), Kiev-Alushta, 1972, pp 309-314 (from RZh-Kibernetika, No 12, Dec 72, Abstract No

Translation: A study was made of means controlled by the user in the COEOL programming system for the Dnepr-21. In order to retain the general organization of the COBOL program the debugging instructions in the indicated system are in the form of an auxiliary division of the COBOL program, the so-called debugging section which is an instruction for the operations system with respect to the problem statement mode on the computer. The language of giving this instruction is similar with respect to form to the COBOL language and is based on its concept and terminology. All of the debugging operators in the COBOL-Duepr-21 system are divided into the following categories: 1) the operator for initial running of the program; 2) the operators for interrupting the normal course of execution of the program on occurrence of certain situations which are provided for; 3) operators permitting additional information

USSR

ERFERORE PRIN

UDC: 8.74

SHABANOV-KUSHNARENKO, Yu. P., YEREMIN, G. S., USENKO, S. A.

"Linear Mathematical Model of the Conversion of Complex Acoustic Signals

Probl. bioniki. Resp. mezhved. temat. nauch.-tekhn. sb. (Problems of Bionics. Republic Interdepartmental Thematic Scientific and Technical Collection), 1971, vyp. 7, pp 68-74 (from RZh-Kibernetika, No 4, Apr 72, Abstract No 4V599)

Translation: Problems of modeling loudness conversions in the human auditory analyzer are considered. A linear mathematical model is proposed for a set of acoustic signals whose amplitude-frequency spectrum consists of a finite number of harmonic components. The band in the range of sounds audible to man where the axioms are satisfied is experimentally

1/1

UDC: 536.24:536.42

BUTUZOV, A. I., FAYNZIL'BERG, S. N., BEZRODNYY, M. K., USENKO, VIII., KUDELYA, P. P.

"On the Problem of Studying Heat Exchange During Boiling of Liquids Under Inertial Loading Conditions"

Teplofiz. i teplotekhnika. Resp. mezhved. sb. (Thermal Physics and Heat Engineering. Republic Interdepartmental Collection), 1970, Vol 16, pp 137-140 (from RZh-Mekhanika, No 9, Sep 70, Abstract No 98869)

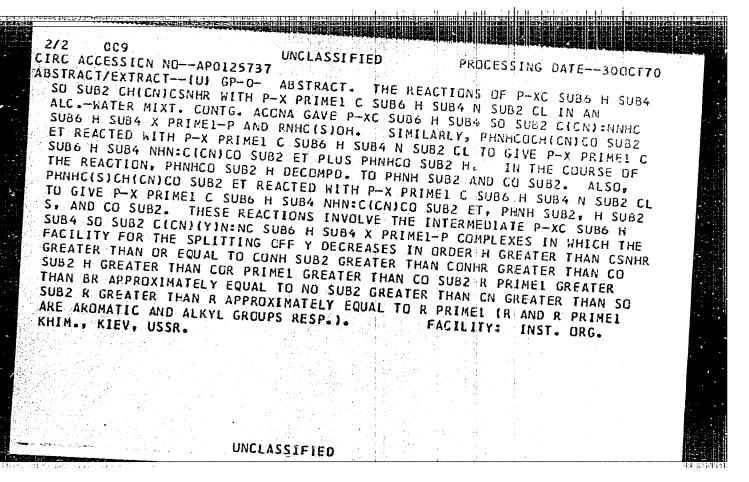
Translation: Experiments are conducted on determining the laws of heat exchange which accompany boiling of freon-12 and water on heating surfaces with thermal loads $q=(6.6-200)~{\rm kW/m^2}$, and with inertial overloads a/g=1-5250. Three typical heat exchange regions are distinguished: well developed boiling when $q>q_{\rm fc}+q_{\rm ub}$, undeveloped boiling $--q_{\rm fc}< q< q+q_{\rm ub}$, and a heat exchange region with free convection $--q< q_{\rm fc}$. The thermal loads $q_{\rm fc}$ and $q_{\rm ub}$ are given in the form of power functions of the inertial overloads and the kind of liquid. In addition, $q_{\rm fc}$ depends on the thickness of the liquid layer on the heat exchange surface. For the heat exchange region with free convection, the authors recommend the usual form of dimensionless relationship with substitution of inertial acceleration a for acceleration due to

1/2

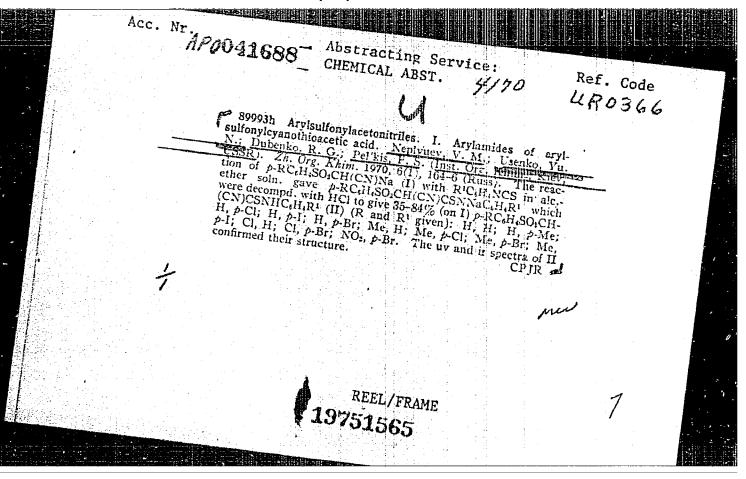
APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

BUTUZOV, A. I., et al, Teplofiz. i teplotekhnika. Resp. mezhved. sb., 1970, vol 16, pp 137-140 (from RZh-Mekhanika, No 9, Sep 70, Abstract No 98869)

gravity g. In the region of well developed boiling, the conventional form of relationship between the coefficient of heat exchange a and heat flux $q_b = q - q_{fC}$. The effect of inertial overloading is accounted for in the parameter q_{fC} . In the region of undeveloped boiling, they propose a relationship of the form $a = cq_K^{n}(a/g)^{m}$, where a means a are constants. The results of the experiments agree with the data of lation with closed circulation of the cooling agent in the rotor sections of a model; this installation can be used to conduct experiments at heat fluxes of up to 10 MW/m².


2/2

USSR


<u>-</u> 3ਵ _

		सम्बद्धाः स्वरं क्षेत्र स्वतः स्वरं क्षित्र स्वरं क्षित्र स्वतः । स्वरं क्षत्र स्वरं स्वरं स्वरं स्वरं स्वरं स स्वरं स्वरं स्		
			adar disa at salap salab	region of a second second
Acc.	Nr.: _A70046706			
			Ref. Code: UR0146	
	USSR		Inc. 482 200	
	BUTUZOV, A.I., KUDELYA, P.P.	BEZRODNYY, M.K., FAYNZII USENKO, V.I.	UDC 681.128.5 BERG, S.N.,	
	"Thermistor Co	mpensated Quantity Gage"		
	Termoregiate	yy kompensirovannyy urovn rad, <u>Izvestiya Vysshikh U</u> Lye, 1970, No 1, pp 123-12	emer (cf. English chebnykh Zavedeniy,	
1/1	The desi gage with compe variation of the	gn is considered of a the nsation for the errors as e parameters of the amble	rmistor quantity sociated with the nt medium.	
		19790009	27 21	

1/2 009 TITLE--ARYLSULFGNYLACETONITRILES. III. ARYLSULFONYLCYANOTHIOACETIC ACID ARYLAMIDES IN THE JAPP-KLINGEMANN REACTION. HYDROLYTIC SPLITTING OFF OF AUTHOR-(04)-NEPLYUYEV, V.M., USENKO, YU.N., DUBENKO, R.G., PELKIS, P.S. COUNTRY OF INFO--USSR SOURCE—ZH. ORG. KHIM. 1970, 6(4), 801-5 DATE PUBLISHED 70 SUBJECT AREAS-CHEMISTRY TOPIC TAGS-THIOL, ACETIC ACID, ORGANIC NITRILE COMPOUND, ANILINE, CONTROL MARKING--NO RESTRICTIONS DUCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME-2000/2154 STEP NO--UR/0366/70/006/004/0801/0805 CIRC ACCESSION NO-AP0125737 UNGLASSIFIED

"APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0

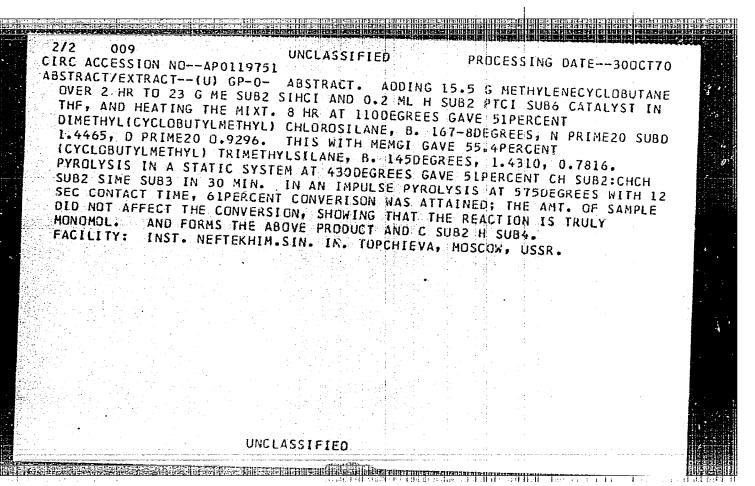
Pulse Technique

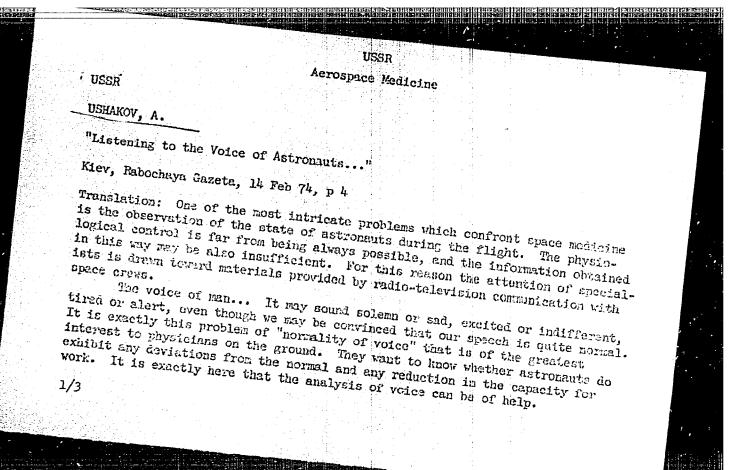
USSR

UDC 621.374.5(088.8)

USHA, Ye. B.

"A Current Pulse Shaper"


USSR Author's Certificate No 259143, Filed 1 Apr 68, Published 28 Apr 70 (from RZh-Radiotekhnika, No 10, Oct 70, Abstract No 10G211 P)


Trinslation: This author's certificate introduces a current pulse shaper which contains a keying stage based on two transistors with a common emitter resistor, and a source of controlling current pulses. To increase the input circuit impedance and the stability of the discrimination threshold, the emitters of the transistors in the keying stage are connected to the collector of an additional transistor whose emitter is connected to the source of controlling current pulses.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002203420008-0"

1/2 TITLE--SYNTHESIS AND PYROLYSIS OF CYCLOBUTYLMETHYL TRIMETHYLSILANE -U-009 AUTHOR-(05)-NAMETKIN, N.S., GUSELNIKOV, L.YE., USHAKAVA, R.L., STARTSEVA, PROCESSING DATE--300CT70 COUNTRY OF INFO-USSR SOURCE-IZV. AKAD. NAUK SSSR, SER. KHIM. 1970, [2], 494 DATE PUBLISHED----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--CHEMICAL-SYNTHESIS, PYROLYSIS, ORGANIC SILANE, PLATINUM CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0847 CIRC ACCESSION NO--APOI19751 STEP NU--UR/0062/70/000/002/0494/0496 UNCLASSIFIED

USSR

USHAKOV, A., Rabochaya Gazeta, 14 Feb 74, p 4

The analysis of voice is a very labor-consuming process. Even in using the most advanced instruments the researchers were unable to process the obtained materials. To study speech information the use was made of digital electronic computers, but even their speed of response proved to be insufficient.

The help came from the most reliable and perfect instrument which is the ear of man. A well-trained expert-listener can solve problems which are beyond the powers of an electronic computer. He catches and compares the finest nuances of speech, peculiarities of intonation, signs of hesitation, the structure of a sentence, peculiarities of accent, and on their basis he forms an opinion on the structure of man. The appraisals of a group of these experts may be processed mathematically and then the results obtained will be not inferior to the finest method and instrumental data. To be sure, one method does not exclude the other, the expert

The changes in speech of every man manifest themselves in a different way.

Therefore, long before the flight there is established a psychological "passport"

constitutes a standard with which are later compared the upeach characteristics. This document

-1-